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ABSTRACT

Medical imaging is nowadays a vital component of a large number of clinical applications. For comparing
images of the same patient (sometimes acquired using different modalities) or for comparing different
patients, the images need to be aligned. When images from the same patient or from a collection of
patients are acquired using different modalities, their alignment is necessary. Registration is the process
of finding the best alignment between a pair or a collection of images. The main topic of this thesis is
the conception and the application of intensity-based techniques, both for pairwise and multi-subjects
registration. In the context of pairwise registration, we have investigated the use of a stochastic gradient
descent technique (SPSA) for optimizing the mutual information metric. For non-rigid registration, the use
of volumetric tetrahedral meshes has been implemented as a deformation model in collaboration with A.
du Bois d'Aische. The targeted application for our algorithm is the tracking of anatomical changes between
pre-operative and intra-operative images in brain, prostate and liver surgery. A second method, equivalent
to optical flow but developed for multi-modal images is also described and applied to the problem of atlas to
pathological brain registration. In the context of multi-subjects registration, we developed an unbiased atlas
generation technique in the Expectation-Maximization framework. At each iteration, the method estimates
a reference for the registration problem by performing an average giving more weight to consistent experts
(E step). ...
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Introduction 1
1.1 Context of the Work

During the past decades, medical imaging has become a vital component
of a large number of clinical applications. One of them is the track of
anatomical features for the planning and assessment of surgical and radio-
therapeutic procedures.

Since information gained from two or several image modalities ac-
quired in the track of anatomical features is usually of a complementary
nature, a proper integration of useful data obtained from the separated im-
ages is often desired. The preliminary step in this integration process is
to bring the acquired images into spatial alignment. The term registration
refers to this alignment procedure.

The first registration techniques - still in use in clinical practice - per-
formed registration by manual adjustment of rotations and translations.
The practitioner proceeds by translating the contours of one image onto
a second. The main drawback of manual registration is the lack of re-
producibility and therefore the intra and extra observers errors that result
from experience or external conditions.

Over time, automated rigid registration algorithms have been developed,
by minimization of a mean square error for mono-modal images and by
matching corresponding boundary surfaces extracted from each modality
for multi-modal images. As many applications require to estimate more
complex transformations, automated non-rigid registration algorithms have
been investigated by constraining the transformation with landmarks (see
e.g. Bookstein [1989]) in each modality and then projecting the transfor-
mations on basis functions such as thin-plate splines.

Registration algorithms have also been studied in other domains than
medical imaging. In video images processing, such algorithms can de-
tect movement between two consecutive frames. One of these techniques,
called optical flow [Thirion 1998] has been applied for matching 3D med-
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ical images.
In 1995, mutual information came up as a powerful measure to mea-

sure the global similarity between multi-modal medical images [Maes and
Collignon 1997, Viola and Wells 1995]. After rigid registration (see Col-
lignon et al. [1995a], Wells et al. [1996]), mutual information has been suc-
cessfully used for non-rigid matching of multi-modal volumes (see Rohde
et al. [2003], Ruekert et al. [1999]) and for a general survey, see Pluim et al.
[2003]). Other multi-modal criterions such as correlation ratio or normal-
ized entropy have also been investigated (see Roche et al. [1998]). The
volumes registered were, until this point, smooth tissues, such as brain,
breast and the methods to register these were quite slow. New methods for
surgery appeared, registering pre-segmented surfaces together and infer-
ring the displacement found on the surface to the whole volume through
a linear elastic model implemented using a finite element method (see e.g.
Ferrant et al. [2001], Papademetris et al. [2002]). These algorithms brought
forward the possibility of including various elasticities within the mechan-
ical model.

1.2 Targeted applications

1.2.1 Pairwise Registration

During surgery, registration is required to fuse pre-operative and intra-
operative data in the Operating Room (OR).

• In neuro-surgery, (non-rigid) brain deformations after craniotomy
need to be estimated to register pre-operative segmentations or land-
marks with the OR referential space.

• After Radio frequency ablation of liver tumors, the overlap between
the initial tumor and the necrosis after surgery has to be estimated.
For computing this overlap, the pre-procedural and post-procedural
images have to be aligned. Non-rigid deformations between these
images are induced by different breath hold patterns.

• MR guided prostate biopsy is another surgical application of regis-
tration algorithms : tumor foci and internal prostate structures can
be better localized and identified on the pre-operative 1.5-T MR im-
age than in the 0.5-T used for surgical navigation. Fusion of these
two modalities brings the advantages of MR guided navigation and
an accurate prostate visualization.
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1.2.2 Registration of a Collection of Subjects

Bringing a collection of subjects in a common space of coordinates en-
ables to build statistical atlases. Such atlases are an important represen-
tation for characterizing anatomy and anatomical variation. They are also
used in identifying structural differences between populations, such as
between healthy newborn infants and infants with white matter injury.
Furthermore, statistical atlases provide prior probability models useful as
constraints to robustify and speed up segmentation and registration algo-
rithms. For example, given prior information about the main modes of
shape variation, a non-rigid registration algorithm may optimize initially
upon these main modes of variation instead of considering all parameters
of the deformation model simultaneously. The use of statistical atlases has
also been investigated for improving the accuracy of automatic segmenta-
tions algorithms and to robustify them against random noise and artifacts
[Warfield et al. 2000].

1.3 Classification of Registration Algorithms

This section attempts to classify existing algorithms using voxel-based sim-
ilarity metrics for automatic registration. These methods distinguish them-
selves from other registration techniques by the fact that they operate di-
rectly on the image grey values, without reducing first the data to a set of
segmented structures to be matched or without any identification by the
user of key points in the modalities to match.

A quick glance to the medical images registration litterature (see
Maintz and Viergever [1998], Pluim et al. [2003] for a survey) shows two
separated algorithmic classes :

• registration algorithms using a prior transformation model. The
most common models are rigid or affine. More sophisticated models
have been proposed for non-rigid registration (B-Splines by Rueck-
ert et al. [2003]). Having a limited number of parameters to op-
timize raise the possibility to optimize the similarity metric with
a wide range of optimization methods : gradient descent, Brent-
Powell [Brent 1973], stochastic methods [Goldberg 1989, Spall 1998],
quasi-Newton methods [Nocedal and Wright 2000], etc...

• registration algorithms addressing the estimation of a dense defor-
mation field, considering independently the 3 components of the
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displacement at each voxel. Variational methods, estimating incre-
mentally a dense deformation field bringing the two images to the
closest local minimum of the metric, are the only option for address-
ing such a huge dimension of the optimization space. The theory
beyond these algorithms is related to functional analysis and Euler-
Lagrange equations. A short description is given in Chapter 3. The
reader is invited to refer to Hermosillo et al. [2001] for more details
about the mathematical background.

Figure 1.1 illustrates this classification. Double arrows indicate links
between algorithmic entities constituting an integrated registration solu-
tion.

The first class of algorithm makes use of three algorithmic objects :

• The transformation object which takes as input a set of parameters
characterizing the transformation. It transforms coordinates in the
fixed image domain to coordinates in the moving image domain.

• The metric which provides a score (cost function) for a set of trans-
formation parameters

• The optimizer, searching for the set of transformation parameters
yielding the best metric score

In the case of a dense deformation field (second class of algorithms),
an incremental dense displacement field is estimated at each iteration. The
similarity metric has to be differentiable for computing at each point the
infinitesimal variation of the metric due to a variation in the three direc-
tions of space of the current displacement at this point. For similarity met-
rics based on statistics and taking the images in their globality, a prelim-
inary step is often the construction of a joint probability density and its
derivatives. The various implementations of mutual information in the
literature differ over the way of estimating this probability density.

Simple arrows in Figure 1.1 show a classification between similarity
metrics. Registration algorithms have been mainly focused on pairwise
registration either for registering an atlas on a subject or to register two
images of the same subjects. A wide set of metrics have been proposed
[Maintz and Viergever 1998] : Sum of Squared Differences [Christensen
et al. 1998, Unser et al. 1995] (only valid for the same modality with prop-
erly normalized intensities), Normalized Cross-Correlation [Maintz et al.
1996, Studholme et al. 1995b] (which allows for linear relationship be-
tween the intensities of the two images), mutual information [Maes and
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Collignon 1997, Viola and Wells 1995], minimization of variance of inten-
sity ratios [Hill et al. 1993b, Zuo et al. 1996].

More recently, an important research effort has been dedicated to regis-
tration techniques able to align a collection of subjects in the same space of
coordinates. An overview of these existing methods is given in Chapter 5,
Section 5.1.

1.4 Contributions

In the light of this global introduction, we summarize in this section the
main contributions of this thesis.

In the context of intra-subject registration the contributions of this the-
sis are

• The development in collaboration with Aloys du Bois d’Aische of
a FEM non-rigid registration method. A classical gradient descent
scheme has been used as optimization method. This algorithm has
been published in Media [du Bois d’Aische et al. 2004]. Our contri-
bution has been to integrate Finite Elements as a non-rigid registra-
tion model in the ITK design.

• The use of a stochastic optimization method, the Simultaneous Per-
turbation Stochastic Approximation (SPSA) for maximizing the mu-
tual information metric between pre-operative and intra-operative
images. The SPSA method has been widely used in many fields
where high dimensional optimization problems must be addressed
(adaptive optics, atmospheric and planetary modeling, cardiological
data analysis, . . . ).1 We chose to investigate the use of SPSA in our
work because of the noisy nature of mutual information. Our code of
the SPSA has been included in the Insight registration and segmen-
tation toolkit. The experiments described in Chapter 4 (Sections 4.4
and 4.6) show that SPSA is suited for capturing rigid as well as non-
rigid deformations. The decreasing in the amplitude of stochastic
perturbations is quite similar to simulated annealing techniques : a
large part of the search domain is explored at the begining of the
process before restraining the search in a closer part of the domain.

1A complete list of references is available on this website : http://www.jhuapl.
edu/SPSA/Pages/References-List_Ref.htm
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• The implementation of a mutual information flow for estimating a
dense deformation field between multi-modal images has also been
submitted for inclusion in the Insight Segmentation and Registra-
tion toolkit. It mixes the Mattes et al. [2003] implementation of
mutual information and the flow concept introduced by Hermosillo
et al. [2001]. We applied this algorithm for capturing non-rigid de-
formations between MR and CT image in the head and neck area
(Chapter 3, Section 3.3) and for atlas to pathological brain registra-
tion (Chapter 3, Section 3.4).

In the context of multi-subject registration for building probabilistic
atlases, the main difficulty is to address the matching of a large data
base of subjects. A straight extension of classical image similarity met-
rics would require to estimate histograms whose dimensionality is related
to the number of subjects in the database. Our contribution consists in
first estimating a central tendency represented by tissue probabilities at
each voxel. All the subjects are then matched on this central tendency by
maximizing mutual information between the probabilistic atlas and each
subject. The computation of the joint histogram is slightly different than in
the classical case since one of the images is a probability map [De Craene
et al. 2005; 2004b]. Our strategy iteratively builds an unbiased reference
giving more weight to consistent subjects in the database. All subjects are
then aligned on this rereference to increase the global consistency of the
database. Our method avoids to introduce any bias in the selection of a
subject as a refence. The weigthing scheme giving more importance to
consistent subjects avoids to work with a fuzzy reference that a simple
average would produce.

1.5 Organization of the Thesis

Figure 1.1 illustrates how each chapter of this thesis fits into the short clas-
sification of registration algorithms made in Section 1.3.

Review of existing methods Chapter 2 presents an overview of existing
methods for performing automatic registration by maximizing mutual in-
formation. Different implementations and algorithms are summarized in
this chapter. We also show the link between a classical gradient descent
and the variational flow introduced in Chapter 3.
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Pairwise registration Chapters 3 and 4 present two different registration
strategies following the transformation model used in the registration pro-
cedure. In Chapter 3, the deformation is represented by a displacement
vector at each voxel. The dimension of the search space is so big that a
variational solution is the best alternative for reaching the nearest localop-
timum. In Chapter 4, a prior model of the transformation (rigid or non-
rigid) enables to keep to the optimization problem a reasonably low com-
plexity. Gradient descent, stochastic gradient descent and genetic opti-
mization schemes are shortly described.

Multi-subject registration Chapter 5 presents a novel algorithm for
bringing a collection of subjects into the same space of coordinates. This
algorithm is currently designed for aligning a collection of segmentations.
Experiments on a database of 80 brain segmentations are presented.

Conclusion and perspectives Overall conclusions of the thesis are given
in Chapter 6 along with a review of our contributions. We also point out
perspectives for further research and collaborations started or continued
all along this thesis work.
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Pairwise
registration

Mono−modal Multi−modal Segmentations

Similarity

Metric

Chapter 5Chapter 2

Chapter 3

Chapter 4

Gray scale
images

Multi−subject
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Prior model

of transformation

Optimizer

Free−form
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Figure 1.1: Classification of registration algorithms.
This figure shows how the different chapters of this thesis fit into the existing
registration algorithms. Double arrows indicate collaborations between constitu-
tive parts of a registration algorithm. Single arrows indicate a classification of
volumetric similarity metrics depending on the nature of the information to be
matched.



Mutual Information for
Automatic Alignment of
Multi-modal Images 2
In this chapter, we introduce the mutual information metric as a similarity mea-
sure for automatic images alginment. We present different implementations de-
scribed in the litterature. We show the link between a first order derivative for a
given transformation model and the concept of flow which is developped further
in Chapter 3.

2.1 Introduction

The reserach which lead to the wide use of mutual information in reg-
istration starts in the 1990’s when the problem of matching multi-modal
images like MR-CT images raised the need of multi-modal similarity mea-
sures. An excellent review of of the litterature related to mutual infor-
mation based registration of medical images can be found in [Pluim et al.
2003]. In this section, only two different implementations of mutual infor-
mation are presented :

• the one by Viola and Wells [1996; 1995] which uses two set of ran-
dom samples for estimating by cross-validation the expectation of
a random variable whose probability density is modeled by Parzen
windowing

• the one by Mattes et al. [2003] which mixes joint histograms and con-
tinous kernel basis functions in order to estimate the probability den-
sities.

2.2 A Brief History

Woods et al. [1992; 1993] first introduced the assumption that regions with
similar tissues (and hence similar grey values) in one image would corre-
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spond to homogeneous regions in the other image. Therefore, the ratio of
grey levels at corresponding points in a certain regions in either images
should vary little. The variance of this ratio is thus minimized to achieve
registration.

Hill et al. [1993a] introduced the use of a feature space or joint his-
togram measuring if the images are aligned or not. This joint histogram is
built from pairs of joint intensities in the fixed and moving images for the
current alignment. The idea is intuitively that a right alignment between
the images will create clusters in the joint histogram. An example of joint

(a) (b)

(c) (d)

Figure 2.1: Joint histogram example.
The images to be aligned are shown in (a) (SPM atlas) and (b). Sub-figures (c)
and (d) show the joint histogram before and after alignment.

histogram before and after rigid alignment is given in Figure 2.1. In this
case, a MR image (Figure 2.1(b)) has to be aligned with the SPM atlas (Fig-
ure 2.1(a)) which is obtained by averaging a collection of aligned subjects.
The joint histogram after alignment (Figure 2.1(d)) shows two picks for
the background and the skull whereas the initial histogram (Figure 2.1(c))
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is more dispersed and shows associations between the background in the
first image and a wide range of gray values in the second image.

A wide family of similarity measures based on the construction of a
joint histogram has emerged. Hill [Hill et al. 1994; 1996] has proposed the
third order moment of the joint histogram, which measures the skewness
of a distribution. Collignon et al. [1995a;b] and Studholme et al. [1995a]
suggested both to use joint entropy as a measure to perform automatic
registration. Mutual information appeared then quickly, simultaneously
introduced by Maes and Collignon [1997] and Viola and Wells [1996; 1995].
In a few years, it became one the most investigated measure for medical
images registration.

2.3 Definition of Mutual Information

For measuring mutual information, two features are extracted from the
images to align. The most common choice of feature is the signal intensity
at each voxel of the two images. Each of these features, considered sepa-
rately can be modelized by a random variable (RV) whose probability den-
sity function must be estimated from a large set of realizations (since each
voxel is a realization of the RV). For measuring similarity between these
random variables, a new random variable is built from the co-occurences
of image features in the fixed and moving images. When another align-
ment is considered, the overlap between grey level is changed and the
probability density function of the joint random variable is modified.

Mutual information actually measures a balance between the Shannon
entropies of the marginal and joint entropies of the image features. If we
call F the feature extracted from the fixed image, M the feature extracted
from the moving image and (M,F ) the co-occurrence of these two random
variable for the current alignment, mutual information is defined as

I(F,M) = H(F ) +H(M)−H(F,M) (2.1)

where H(·) is the marginal entropy 1. Note that in Equation (2.1), both
the moving image entropy and the joint fixed-moving images entropy are
changing when another transformation is defined. Equation (2.1) has thus

1By definition, H(A) = −E{log(p(A))} if p is the probability density function of the RV
A
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to be rewritten this way

I(F,M) = H(F ) +H(MT )−H(F,MT ) (2.2)
= H(MT )−H(MT |F ) (2.3)

where the T indices shows the dependency to the transformation.

Interpretations of MI Equation (2.3) shows that mutual information ac-
tually measures the difference between a priori and a posteriori entropies.
For optimization considerations, the difference between the conditional
H(MT |F ) and joint H(F,MT ) entropies is equal to a constant H(F ). The
minimization of the second term in Equation (2.3) is therefore identical to
the minimization of the joint entropy which tends to make the joint his-
togram as compact as possible. However, a transformation sending the
whole moving image outside the fixed image domain would result in a
single peak whose entropy is minimal. Mutual information attempts to
get far from this undesired solution by adding to the cost function the
marginal (prior knowledge) of the moving image for the current transfor-
mation. Indeed, there would not be any gain in reducing the entropy of a
deterministic random variable.
Another interpretation of mutual information is the Kullback-Leibler di-
vergence. The Kullback-Leibler divergence between two random vari-
ables A and B is defined as

EA

{
log
(
fA
fB

)}
(2.4)

From Equation (2.2) mutual information can be developed as

EF,MT

{
log
(

pF,MT

pF · pMT

)}
(2.5)

which shows that mutual information measures the divergence between
the joint probability for the current alignment and the worst case scenario
of independent variables where the joint probability equals the product of
marginal densities. This observations confirms that mutual information
measures the statistical dependency of random variables.

Estimation of Probability Densities In practice, the probability density
functions of F , MT and F,MT are estimated from the realizations of these
RV at each voxel of the fixed image domain. If X stands for the fixed



2.4 Implementations 13

image domain and if xi ∈ X is a specific voxel, one can observe in xi the
following realizations of F and MT

2

F → f(xi) (2.6)
MT → m(T (xi)) = m(xi + ui) (2.7)

In Equation (2.7), the transformation of the voxel xi can be written using
T (xi) or by introducing the displacement u at this voxel

T (xi) = xi + ui

The key point of all mutual information based registration algorithms
is the estimation of a joint probability density function from the marginal
and joint realizations (2.6) and (2.7). In the next section, we show how the
choice of a specific PDF estimation technique influences the computation
of the first derivative, which can be used in a classical gradient descent
scheme.

2.4 Implementations

2.4.1 Viola and Wells Implementation

Viola introduced (see Viola and Wells [1996; 1995]) the use of Parzen Win-
dows estimation technique and its application to entropy estimation. If a
kernel function gψ if defined as

gψ(z) = (2π)
−N
2 exp(−1

2
ztψ−1z) (2.8)

(where ψ is a scalar if z is a scalar random variable and ψ is a covariance
matrix of size N in case of z is a N dimensional random vector), the esti-
mated probability density will be

p(z) =
1
NA

∑
zn∈A

gψ(z − zj) (2.9)

where A is a sample containing NA realizations {zj} of the RV Z. To avoid
the computation of a continuous integral in the probability domain, the
expectation of a random variable is estimated using a sample B

EZ(f(z)) =
1
NB

∑
zi∈B

f(zi) (2.10)

2with f and m standing for the image intensity function of the fixed and the moving
images
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In the following, we suppose that the sample A is used to estimate the
probability density function p and the sample B is used to estimate the
expectation operator in H(Z) = −E{log(p(Z))}.

MI First Derivative

Using these definitions, and assuming that the covariance matrix ψ to
estimate the fixed-moving images gray levels distribution is diagonal
(ψ−1
fm = DIAG(ψ−1

f , ψ−1
m )), Viola shows (in [Viola and Wells 1996]) that

the derivative of the Mutual Information metric regarding a parameter T
of the transformation can be written as

dI

dT
=

1
NB

∑
xi∈B

∑
xj∈A (mi −mj)(Wm(mi,mj)−Wfm(fmi, fmj))

ψ−1
m

d

dT
(mi −mj) (2.11)

where

• mi(resp. mj) is the moving image luminance function evaluated at
xi + ui(resp. xj + uj) : mi = m(xi + ui) and mj = m(xj + uj)

• fmi = (fi,mi)t where fi = f(xi)

• Wm and Wfm are weight factors defined by

Wm(mi,mj) =
gψm(mi −mj)∑

xk∈A gψm(mi −mk)
(2.12)

Wfm(fmi, fmj) =
gψfm

(fmi − fmj)∑
xk∈A gψfm

(fmi − fmk)
(2.13)

In equation (2.11), it remains to evaluate for each transformation model

d

dT
(m(xi + ui)) = (∇xm(xi + ui))t ·

dui
dT

(2.14)

where T is a given parameter.

2.4.2 Mattes Implementation

Mattes[Mattes et al. 2003] has introduced the use of a joint histogram
smoothed by 3rd BSpline kernels. This way, the variations of the joint
histogram for small perturbations of the transformation parameters get
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smoother than with box kernels. This is an essential property for first
derivative based optimization methods.

In this implementation, the joint probability of moving and fixed im-
age features is estimated from the realizations (2.6) and (2.7) by

pf,m(i1, i2) =
1
N

∑
i

β1

(
i1 −

f(xi)− fmin
∆bF

)
· β3

(
i2 −

m(xi + ui)−mmin

∆bM

) (2.15)

MI First Derivative

For computing the first derivative of mutual information in this case,
Equation (2.2) is expanded by injecting the definitions of marginal and
joint entropies

MI =
∑
i1,i2

pf,m(i1, i2) log(pf,m(i1, i2))

−
∑
i2

pm(i2) log(pm(i2))−
∑
i1

pf (i1) log(pf (i1))
(2.16)

The derivative of Equation (2.16) regarding a parameter T of the trans-
formation is 3 (remind that only pm and pfm are depending on T )

MI,T =
∑
i1,i2

pf,m,T (i1, i2) · (log(pf,m(i1, i2)) + 1)

−
∑
i2

pm,T (i2) · (log(pm(i2)) + 1)

=
∑
i1,i2

pf,m,T (i1, i2) · log(pf,m(i1, i2))−
∑
i2

pm,T (i2) · log(pm(i2))

(2.17)

since
∑

i1,i2
pf,m,T (i1, i2) = 1,T = 0 (the same property can be used for the

marginal moving image density). Moreover, it can be observed that

pm,T (i2) =

[∑
i1

pf,m(i1, i2)

]
,T

=
∑
i1

pf,m,T (i1, i2) (2.18)

3a short notation of the partial derivative is used : f,x denotes the partial derivative of
f regarding x
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By injecting Equation (2.18) in Equation (2.17), the following expression of
mutual information derivative is obtained

MI,T =
∑
i1,i2

pf,m,T (i1, i2) · log
(
pf,m(i1, i2)
pm(i2)

)
(2.19)

Equation (2.19) shows that derivative of mutual information is a weighted
sum of the contributions of each bin. The derivative of the joint PDF bins
can be easily obtained from Equation (2.15)

pf,mu (i1, i2) =
1
N

∑
i

β1

(
i1 −

f(xi)− fmin
∆bF

)
· β3

,i2

(
i2 −

m(xi + ui)−mmin

∆bM

)
∇m(xi + ui) ·

dui
dT

(2.20)

2.4.3 Transformation Jacobian and Metric Flow

A common characteristic, which can be observed from both Mattes and
Viola’s implementations, is the presence of a

dui
dT

(2.21)

factor in the derivative expression
In the ITK [Ibanez and Schroeder 2005] design, this factor is called

“transformation Jacobian” and the metric delegates to another object the
computation of this factor to keep the design modular.

Another interesting consideration is to point the fact that with these
two implementations, the mutual information can be rewritten as

Similarity metric derivative =
∑

Set of samples

flow(sample) ·
dusample

dT
(2.22)

where the flow vector is a complex expression which can be identified
from Eqs. (2.11) and (2.14) for Viola and Eqs. (2.20) and (2.19) for Mattes.

If we consider the simpler case of a mean square error metric for in-
stance, the metric definition looks like

MSE =
∑
i

(m(xi + ui)− f(xi))
2 (2.23)
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and the derivative is thus

MSE,T =
∑
i

2 · (m(xi + ui)− f(xi)) · ∇m(xi + ui) ·
dui
dT

(2.24)

which brings back the dui
dT term.

By identifying this derivative with Equation (2.22), we obtain

flow(sample) = 2 · (m(xi + ui)− f(xi)) · ∇m(xi + ui) (2.25)

which is fairly identical to the numerator of the Optical Flow as first ap-
plied to medical images registration by Thirion [1998].

The concept of flow for image similarity metric will be developed fur-
ther in the next chapter. Both the flow vector of a similarity metric and
its first derivative for a prior transformation model are strongly related
concepts since they are related to the first variation of the metric.

2.5 Discussion about the Use of MI Compared to
Other Similarity Metrics

Numerous registration measures have been proposed over the years for
performing automatic registration. For an extensive list of voxel based
similarity measures, the reader can refer to [Maintz and Viergever 1998],
page 7. Of all these measures, mutual information has been one of the
most intensively researched. Such an interest is a logical consequence of
two advantages of mutual information

• Mutual information is an automatic measure, it uses only the im-
age intensities without requiring any segmentation or landmarks.
However, as seen in Chapter 4, a pre-processing step is sometimes
required to correct intensity inhomogeneities.

• Mutual information is one of the few intensity based measures that is
well suited to registration of multi-modal images. Unlike measures
based on correlation of grey values or differences of grey values, mu-
tual information does not assume a linear relationship between the
grey values in the images.

Several independent studies have shown the suitability of mutual
information as a registration measure for multi-modal medical images
[Maes and Collignon 1997, Meyer et al. 1997, Viola and Wells 1996; 1995].
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One of the best illustration of mutual information performances can be
found in the Retrospective Registration Evaluation Project (RREP), an in-
ternational study comparing the accuracy of sixteen registration methods
against a screw marker gold standard [West et al. 1997].

Despite these many successes, some applications have been reported
where mutual information performs poorly [Penney et al. 1999, Studholme
et al. 1999, Thevenaz and Unser 1997]. In these cases, the mutual infor-
mation registration function is often ill-defined and contains a lot of local
maxima. This can occur for instance when the images are of low resolu-
tion, or when the region of overlap is small.

To improve the behavior of mutual information in these problematic
cases, several methods have been suggested, such as multi-resolution
methods [Thevenaz and Unser 1997], using higher-order mutual informa-
tion [Rueckert et al. 2000] or by including spatial information into the reg-
istration measure [Pluim et al. 2000].

Another alternative is the use of normalized mutual information as
an overlap invariant measure [Studholme et al. 1999]. Butz [Butz et al.
2002, Butz and Thiran 2002] has shown that normalized mutual informa-
tion makes possible to select features automatically during the registration
process when mutual information always chooses for features of maximal
entropy.



Maximizing Mutual
Information for
Free-form
Transformations : a
Variational Approach 3
The mathematical developments in this chapter are mainly taken from [Hermosillo
et al. 2001]. The reader should refer to this reference for a complete description
of the variational framework applied to multi-modal images matching. It will be
shown in Chapter 5 how this framework is used in our probabilistic atlas estima-
tion procedure.

3.1 Variational Principles for Similarity Measures

If no assumption is made regarding the nature of the displacement field to
recover, the registration problem can be seen as the optimization of a cost
functional I[u] where u is the 2D or 3D displacement field.

The principles behind a variational analysis is to look for a displace-
ment field u making the cost functional stationary i.e. a displacement field
vanishing the first variation of the functional

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

= 0, ∀h (3.1)

where h is an arbitrary function belonging to the same space of continu-
ous and differentiable functions as u. A common requirement for h is to
restrict its space to functions equal to 0 on the border of the spatial domain
Ω. In Equation (3.1), ε is a scalar factor multiplying the perturbation func-
tion h. Figure 3.1 illustrates the definition of u, h and ε for a 1D domain
on the (0, 1) interval.
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u(x)

u(x) + εh(x)

h(x)

x = 0 x = 1

Figure 3.1: Stationarity of a cost functional.
A perturbation function h is added to the current displacement field u with a
scaling parameter ε. The purpose is to solve for the displacement field u such that
the derivative of the cost functional regarding ε tends to 0 for ε→ 0.

Generally speaking, the cost functional I, is made of two terms, a
matching measure and a regularization term. The regularization term is
usually depending on the displacement field spatial derivatives ∂ui

∂xj
and

constrains the spatial variations. If we define the Jacobian matrix of the
displacement field

(Du(x))ij =
∂ui
∂xj

(3.2)

a general form for the cost functional is

I(u) = J (u) +R(Du) (3.3)

=
∫

Ω
φ(x,u(x), Du(x))dx (3.4)

For computing the derivative in Equation (3.1), a development of I(u+εh)
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is used 1

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

=
∫

Ω
dx(φ,uh + φ,u,xh,x + φ,u,yh,y + φ,u,zh,z) (3.5)

=
∫

Ω
dx(φ,u −

∂φ,u,x

∂x
−
∂φ,u,y

∂y
−
∂φ,u,z

∂z
)h

+
∫

Ω
dx

(
∂(φ,u,xh)

∂x
+
∂(φ,u,yh)

∂y
+
∂(φ,u,zh)

∂z

)
︸ ︷︷ ︸

(∗)

(3.6)

The transition from Equation (3.5) to Equation (3.6) is obtained after inte-
gration by parts. The second term (∗) of Equation (3.6) can be rewritten
using the divergence theorem

(∗) =
∫
∂Ω

dsh
(
φ,u,xnx + φ,u,yny + φ,u,znz

)
= 0 since h = 0on ∂Ω

(3.7)
Since the second term of Equation (3.6) is equal to zero, Equation (3.1) is
equivalent in our case to

∂I(u + εh)
∂ε

∣∣∣∣
ε=0

=
∫

Ω
dx h(φ,u − div(φ,Du)) = 0 ∀h (3.8)

Equation (3.8) is equivalent to a scalar product

< h, φ,u − div(φ,Du) >= 0 ∀h (3.9)

Since Equation (3.9) must hold ∀h, the displacement field u making the
cost functional stationary must satisfy the following condition on Ω

∇uI
def= φ,u︸︷︷︸

matching term

− div(φ,Du)︸ ︷︷ ︸
regularization term

= 0 ∀x ∈ Ω (3.10)

The most common way of solving Equation (3.10) is a gradient descent
scheme computing at each iteration an incremental displacement field that
is then added to the current displacement field : ut+1 = ut + ∆ut with

∆ut = −η · ∇uI (3.11)

where η is a learning rate also referred to as time step in the ITK [Ibanez
and Schroeder 2005] implementation.

1As in the previous chapter, a short notation of the partial derivative is used : f,x de-
notes the partial derivative of f regarding x
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3.2 Application to Mutual Information

In this section, we apply the derivation scheme explained for the general
case of a cost functional in Section 3.1 to the particular case of the mutual
information metric.

As seen in the previous chapter, mutual information belongs to an im-
portant family of histogram based similarity metrics. These metrics rely on
the computation of a joint density probability of gray levels in the pair of
images for the current alignment. For a given transformation, each voxel
of the fixed image domain yields a pair of intensities in the fixed and the
moving image

(f(x),m(T (x))) (3.12)

where f (resp. m) is the signal intensity function in the fixed (resp. mov-
ing) image. All these pairs of joint intensities enable the computation of
a joint probability density (either by Parzen windowing [Viola and Wells
1995]or by histogram binning [Maes and Collignon 1997]).

If pf,m denotes the joint probability density between the fixed and the
moving image and pf (pm) denotes the marginal density of the fixed (mov-
ing) image signal intensities, mutual information is computed for a dis-
placement field u(x) following

MIu = −H(I1, I2) +H(I1) +H(I2) (3.13)

= −
∑
i1

pf (i1) log(pf (i1))−
∑
i2

pmu (i2) log(pmu (i2))

+
∑
i1,i2

pf,mu (i1, i2) log(pf,mu (i1, i2)) (3.14)

A variational flow of this metric is obtained as described in Section 3.1
by adding a continuous perturbation εh(x) to the current displacement
field u(x). The metric derivative regarding the ε scalar parameter is then
computed (Equation (3.1)) for ε = 0 :

∂MIu+εh

∂ε

∣∣∣∣∣
ε=0

=
∑
i1,i2

∂pf,mu+εh(i1, i2)
ε

∣∣∣∣∣
ε=0

· log

(
pf,mu+εh(i1, i2)
pmu+εh(i2)

)
(3.15)

where the i1 and i2 indices discretize the range of gray levels in the fixed
and moving image into equal bins. The joint probability distribution
must be estimated using continuous interpolation functions in order to
get a well defined derivative. Possible interpolation schemes are trilinear
[Fransens et al. 2004] or B-Spline [Mattes et al. 2003].
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Mattes’s implementation (see Chapter 2, Section 2.4.2) uses a separa-
ble kernel obtained by composing a “box car” function in the fixed image
dimension and a 3rd order B-Spline in the moving image dimension (the
joint PDF derivative needs only to be computed in this dimension). If we
replace the discrete sum in Equation (2.15) by a continuous integral, this
equation can be rewritten as

pf,mu (i1, i2) =
1
|Ω|

∫
Ω
β1(f(x)− i1)β3(m(x + u)− i2)dx (3.16)

Injecting the definition of pfm (Eq.3.16) in Eq.3.15 yields

∂MIu+εh

∂ε

∣∣∣∣∣
ε=0

=
∫

Ω
κf,mu (x)∇m(x+u)h(x)dx

def=< ∇uMI,h(x) > (3.17)

where κf,mu is defined by

κf,mu (x) =
1
|Ω|

∑
i1,i2

log

(
pf,mu (i1, i2)
pmu (i2)

)
β1(f(x)−i1)β3′(m(x+u)−i2) (3.18)

Equation 3.17 shows that the derivative regarding the ε parameter is the
scalar product between two functions : h(x) (the perturbation function)
and the MI metric flow defined by

∇uMI = κf,mu (x)∇m(x + u) (3.19)

3.3 Application : MR-CT Registration using MI Flow

The data set for this experiment is composed of two patients. For each pa-
tient, a CT scan (size of 512x512x70) and a MR image (size of 256x256x50)
were acquired. The patients moved between both acquisitions which re-
sults in a bending of the spine. The transformation between both images
is recovered in a first step using an articulated transformation model (this
algorithm has been developed by du Bois d’Aische et al. [2005], du Bois
d’Aische et al. [2005]). In a second time, our non-rigid MI flow registration
algorithm has been applied to recover the non-rigid deformations induced
by the spine displacement. The results are shown in Figure 3.2 for the first
patient and in figure Figure 3.3 for the second patient after articulated and
free-form alignment.
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The MR-CT results have been validated by an oncologist. Landmarks
have been selected in the images. The landmarks have been placed every-
where in the neck region, at muscle crossings, in the vessels and near the
spinal column. The mean error after the articulated registration decreases
from 3.89 to 2.22 mm and the maximum error decreases from 7.9 to 4.1
mm. After the mutual information based flow, the mean error decreases
to 1.61 mm and the maximum error decreases to 3.5 mm.

(A) (B) (C)

Figure 3.2: MR-CT articulated and free-form registration for patient 1.
Image A presents the target MR image, image B presents the result of the artic-
ulated registration of the CT to the MR, and image C presents the result of the
mutual information flow-based registration

(A) (B) (C)

Figure 3.3: MR-CT articulated and free-form registration for patient 2.
Image A presents the target MR image, image B presents the result of the artic-
ulated registration of the CT to the MR, and image C presents the result of the
mutual information flow-based registration
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3.4 Application : Atlas-Based Segmentation of Patho-
logical Brain MR Images by Combining a Mutual
Information Flow and a Radial Lesion Growth
Model

3.4.1 Introduction

Various approaches have been proposed in the literature for matching
pathological brains with anatomical atlases. Kyriacou and Davatzikos
[1999] presented a bio-mechanical based model simulating a contraction
of the tumor region. A “normal” patient is registered on the atlas. A tu-
mor growing algorithm is then applied to the registered atlas. This phase
is driven by anatomical features (segmented structures) to estimate the lo-
calization of the tumor and the level of strain. An opposite strategy for
atlas to pathological brain registration has been introduced by Dawant
et al. [1999]. In their approach a synthetic lesion (seed) is introduced in
the atlas. Thiron’s [Thirion 1998] demons algorithm is then run on the
seeded atlas. However, to obtain a precise tumor growth, the seed can not
be too small compared to the tumor size. This requires to mask important
anatomical information in the atlas which tends to produce segmentation
errors in case of big tumors. For this reason, Bach Cuadra et al. [2004] sug-
gested to introduce an hybrid non-registration model splitting the image
into two regions. Inside the tumor area, a model of lesion growth is ap-
plied which assumes a radial growth from a single voxel seed until tumor
contour. Outside the tumor area, demons algorithm is applied and a total
regular deformation field is ensured by using an adaptive Gaussian filter.
Recently, two approaches [Duay et al. 2004, Stefanescu et al. 2004] solved
the problem of atlas to pathological brain registration by locally adapting
different elasticities of the transformation rather than modelling the defor-
mation induced by the tumor.

Optical flow has been widely used in the context of atlas-based seg-
mentation. This technique estimates iteratively a dense deformation field
at each point of the fixed image. The classical optical flow formulation
[Thirion 1998] relies on the assumption that the intensity distributions are
identical in the fixed and moving images. Even if both images are from the
same modality (MR in our case), a contrast product is often used in clinical
practise to better appreciate the anatomical limits of tumors. Since statis-
tical similarity measures are more robust to variations of contrast in both
images, variational approaches estimating the flow of such metrics have
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been investigated. Hermosillo has introduced in [Hermosillo et al. 2001]
a mathematical framework for computing a variational flow from vari-
ous similarity metrics (mean square error, mutual information, correlation
ratio). The flow computed from global similarity measures incorporates
local information (moving image gradient at this point) as well as global
information (marginal and joint probability distributions of signal intensi-
ties). Our implementation differs from Hermosillo’s by the use of B-Spline
kernel functions (instead of Parzen windowing) to estimate the joint prob-
ability distribution [Mattes et al. 2003]. A continuous estimate of the the
joint probability distribution is a critical point for computing infinitesimal
variations of the metric.

The approach we present here is based on the works of [Bach Cuadra
et al. 2004]. However, an important change is introduced trying to over-
come their main limitation. Their approach presented excessive deforma-
bility of some areas such as meninges and sinuses. The assumption of con-
stant intensity (needed to be fulfilled by demons algorithm) between im-
age structures is violated in these areas due to the presence of a contrast
agent in the patient images. Instead of using a demons algorithm which is
based on the least squares minimization criteria, an optical flow method
that minimizes the mutual information is proposed. That makes the de-
formation more robust in regions where a contrast product is present.

3.4.2 Algorithm Description

Mutual Information Flow Registration for Normal Subjects

The number of incremental estimations of the 3D dense displacement field
has to be fixed by the user. At each iteration, the joint histogram is esti-
mated by random sampling through the image domain. The mutual in-
formation flow is then computed at each voxel using Eq.3.19.

The implementation of the mutual information flow has been inte-
grated in the Insight Toolkit[Ibanez and Schroeder 2005] as a subclass of
the PDEDeformableRegistrationFunction class.

Atlas to Pathological Brain Non-rigid Registration

Our approach to brain atlas deformation in the presence of space occu-
pying tumors is based on Bach’s MLG algorithm [Bach Cuadra et al. 2004]
but differs from the fact that a flow optimizing mutual information is used
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instead of the demons algorithm. The overall process can be summarized
in 4 steps:

1. An affine transformation [Cuisenaire et al. 1996] is applied to the
atlas image in order to globally match the patient.

2. The lesion is segmented using the Adaptive Template Moderated
Spatially Varying Statistical Classification (ATM SVC) algorithm [Warfield
et al. 2000].

3. The atlas is manually seeded by an expert with a single-voxel placed
on the estimated origin of the patient’s lesion.

4. The non-linear registration based on a mutual information flow and
a MLG tumor growth model is performed in order to deform the
seeded atlas on the target patient.

The non-rigid deformation method we propose distinguishes between
those two areas fixed from the lesion segmentation. Outside the lesion,
the optical flow force as defined in Eq. 3.19 is applied. Inside the lesion, the
tumor growth model assumes a radial growth of the tumor from the tumor
seed.

The displacement vector computed at every voxel using either the MI
flow force or the tumor growth model is regularized by an adaptive Gaus-
sian filter to avoid discontinuities around the lesion borders.

Three areas are considered in the smoothing process: inside the lesion
area, close to the lesion (within 10 mm of the tumor) where large defor-
mations occur, and the rest of the brain. Smoothing is not necessary inside
the lesion because the vector field induced by the model of lesion growth
is highly regular and the continuity is ensured. So, σ = 02 inside the le-
sion area. In the region close to the tumor (including the tumor contour)
there are large deformations due to the tumor growth. Then, it is neces-
sary to allow large elasticity, i.e. σ should have a small value, typically 0.5
mm. In the rest of the brain, deformations are smaller, due primarily to
inter-patient anatomical variability. So, a larger σ proves to be better, as it
simulates a more rigid transformation.

2where σ2 is the variance of the gaussian filter
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3.4.3 Results

Data Set

The patient images have been retrieved from the Surgical Planning Labo-
ratory (SPL) of the Harvard Medical School & NSG Brain Tumor Database3.
They consist in volumes of 128 coronal slices of 256 × 256 pixels and
0.9375×0.9375×1.5mm3 of voxel size and all of them have a meningioma.
No brain edema was observed on the data set. Notice that all the patient
images have been acquired using a contrast agent. The digital atlas used in
this work also comes from the SPL [Kikinis, R. 1996]. It is made of a large
number of anatomical structures manually drawn on the MR of a single
normal subject scanned in 160 coronal slices with 0.9375×0.9375×1.5mm3

voxel size.

Segmentation of Brain Structures

The SPL digital atlas MR image has been deformed on 3 patients using the
algorithm described in Sec 3.4.2.

Fig. 3.5 and 3.6 show the atlas contours of the ventricles, the central
nuclei and the thalamus projected after transformation on the patient im-
ages. For segmenting these structures, no significant difference has been
observed between optical and mutual information flow. However, the
two flows behave differently in the presence of different contrasts in both
images. For instance, around the mid-sagittal plane, the classical opti-
cal flow is disturbed by a high difference in signal intensities (the mid-
sagittal plane is bright in the patient image and dark in the atlas). This
is illustrated on Fig.3.4: Fig.3.4(a) shows a coronal slice of the target pa-
tient image, the deformed atlas image is shown in (b) using optical flow
and in (c) using MI flow. The dotted line shows that an important dis-
tortion appears around the mid-sagittal plane when using the optical flow
deformation.

3http://spl.bwh.harvard.edu:8000/˜warfield/tumorbase/
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(a) (b) (c)

Figure 3.4: Mutual information and optical flows comparison.
The patient target image is shown in (a). Sub-figure (b )and (c) show registration
results using optical (b) and MI(c) flow. Mutual information is more robust to
the contrast difference along the doted line than the Demon’s algorithm.
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(1)

(2)

Figure 3.5: Segmentation results obtained after alignment of the atlas on 3 pa-
tients with large tumors(each row show a different patient, last patient is shown
in Figure 3.6). Contours of the tumor, ventricles, thalamus and central nuclei
are overlayed on the patient image. A radial tumor growth deformation model is
used inside the lesion. Outside the lesion, a mutual information variational flow
is used to compensate inter-subject variations.
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(3)

Figure 3.6: Segmentation results obtained after alignment of the atlas on 3 pa-
tients with large tumors, patient 3.

Case 1 Case 2 Case 3

Figure 3.7: 3D rendering of tumor, ventricles, thalamus and central nuclei after
atlas alignment on 3 patients with large tumors





Maximizing Mutual
Information for Prior
Transformation Models 4
This chapter introduces first the classical registration pipe-line when using prior
transformation models. The rigid and non-rigid transformation models we used
in our work are then presented. A short description of the optimization methods
we have used in our experiments is described, with a particular stress on the
SPSA optimization method. In the second part of this chapter, we present different
clinical applications using the concepts described in the first part.

4.1 Registration Pipeline

A common representation of automatic registration algorithms for prior
transformation models distinguish three main components in the design :
a transformation model representing the prior knowledge on the transfor-
mation to be found, a metric measuring the degree of alignment between
the fixed and the moving image for a given transformation and an opti-
mizer which seeks for the best transformations parameters (i.e. the pa-
rameters yielding the best metric value). These concepts are illustrated in
Figure 4.1 [Ibanez and Schroeder 2005]. The applications presented in this
chapter (Sections 4.4 and further) all use mutual information as similar-
ity metric (Chapter 2). The next two sections describe the transformation
models and optimizers used in the applicative part of this chapter.

4.2 Transformation Models

4.2.1 Rigid and Affine Transformation Models

A classical family of geometrical transformations is the affine transfor-
mation model which represents translations, rotations, scaling and skew.
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Fixed Image

Moving Image

Interpolator

Metric

Optimizer

Transform

Section 4.2

Section 4.3

Chapter 2

Figure 4.1: Registration pipeline.The registration pipeline is made of three main
components : the metric, the transformation model and the optimizer. The trans-
formation takes coordinates of points in the fixed image domain and map them
in the moving image domain. To measure the grey level at these mapped coor-
dinates, an interpolator is required. The optimizer iteratively solves for the best
transformation parameters optimizing the metric.

It encompasses rigid transformations which are made up from chaining
translations and rotations transformations.

Using the affine transformation model a point of coordinates x0, x1, x2

is mapped to a point y0, y1, y2 following y0

y1

y2

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·

 x0

x1

x2

+

 t0
t1
t2

 (4.1)

This transformation can be broken down to y0

y1

y2

 = S ·RX ·RY ·RZ · C ·

 x0

x1

x2

+

 t0
t1
t2

 (4.2)

In Equation (4.2), S stands for a scaling matrix, RX , RY and RZ are rota-
tions matrices around the X , Y and Z axes and C is a skew matrix.

S =

 sx 0 0
0 sy 0
0 0 sz

 ,
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RX =

 1 0 0
0 cos(rx) −sin(rx)
0 sin(rx) cos(rx)

 ,

RY =

 cos(ry) 0 sin(ry)
0 1 0

− sin(ry) 0 cos(ry)

 ,

RZ =

 cos(rz) − sin(rz) 0
sin(rz) cos(rz) 0

0 0 1

 ,

RZ =

 1 tan(cx) tan(cy)
0 1 tan(cz)
0 0 1

 .

The affine transformations is therefore characterized by the following vec-
tor of parameters

~α = (sx, sy, sz, rx, ry, rz, cx, cy, cz, tx, tx, tz)t (4.3)

Usually, tx, ty et tz are expressed in millimeters and cx, cy et cz , rx, ry and
rz in degrees. The scaling parameters sx, sy et sz are unitless.

For the optimization of the transformations parameters, the si param-
eters are often replaced by

s′i = 100 · ln(si)

This way, the search domain of si cover positive and negative numbers in
the same manner as rotation and translation parameters. More complex
representations of affine transformations using quaternions are described
in the Insight software guide [Ibanez and Schroeder 2005].

4.2.2 Finite Elements as a Non-Rigid Transformation Model

To represent the space of allowed deformations, a set of basis functions
need to be defined. The amplitude assigned to each basis function is found
by the iterative optimization method described in Section 4.3.2. For local
deformations, each basis function is non-null on a limited fraction of the
image domain. A common way of modeling the deformations of an elastic
body is to split the domain of interest in small elements assuming the de-
formation inside each element interpolates the node displacements of this
element. This interpolation is defined by shape functions associated to each
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node. Using this quantization scheme, different mechanical properties can
be assigned to different elements.

Numerous techniques have been proposed for designing elements
which follow accurately the borders of the different structures. In our lab-
oratory (Ferrant et al. [2002; 2001], du Bois d’Aische et al. [2004]), some re-
search has been undertaken to design meshing strategies providing faith-
ful surfaces representation and well shaped elements. Mutli-resolution
meshing strategies generally allow to find a compromise between these
two conflicting requirements.

Shape Functions

The decomposition of the displacement field as a weighted sum of basis
functions is a flexible manner of representing arbitrary deformation fields
with easily controlled complexity and local fidelity. A broad class of ba-
sis functions have been used (Radial Basis Function [Ruekert et al. 1999],
B-splines [Kybic and Unser 2000],...). In the finite element method, the do-
main of interest is divided into a mesh of elements, and the displacement
field u is estimated inside each element by

ul(x) =
∑

n∈Nodes

unl N
n
el(x) (4.4)

where unl is the lth component of the displacement for the nth node. Nn
el

represents the shape function associated with the nth node. Shape func-
tions are non-null in the element volume only. The shape functions of a
node tends to zero around the other node of the same element. In the case
of tetrahedral meshes, the shape functions are often chosen as linear func-
tions. Ranking the node displacements in a vector U and the shape func-
tions in a vector N el(x), Equation (4.4) can be compacted as [Zienkewickz
and Taylor 1987]

u(x) = N el(x) ·U (4.5)

Stress and Strain

Stress can be defined as the intensity of internal force on an infinitesimal
surface element at each point of the volume of interest. Two types of stress
can be distinguished :

• Normal (or extensional): act normal to the plane of an infinitesimal
surface element
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• Shear: act in-plane of this element.

Considering surface orientations with normals along x, y and z lead to
the representation of this physical property by a second order symmetric
tensor. For the convenience of notations, the non-redundant values of the
stress tensor will be ranked in a vector denoted by σ.

Strain can be defined as the percentage deformation of an infinitesimal
surface element. Two types of strain can be distinguished :

• Normal (or extensional) : local elongation of the material at this
point

• Shear: angular change between two orthogonal basis vectors of the
infinitesimal surface element.

Considering x, y and z orientations of the surface normal lead to the rep-
resentation of strain by a second order symmetric tensor. As for stress, the
non-redundant values are ranked in a vector denoted by ε.

ε =
(
∂u0

∂x0
,
∂u1

∂x1
,
∂u2

∂x2
,
∂u0

∂x0
+
∂u1

∂x1
,
∂u1

∂x1
+
∂u2

∂x2
,
∂u0

∂x0
+
∂u2

∂x2

)t
= L · u(x)

(4.6)
where L is a differential operator defined by

L =



∂/∂x0 0 0
0 ∂/∂x1 0
0 0 ∂/∂x2

∂/∂x0 ∂/∂x1 0
0 ∂/∂x1 ∂/∂x2

∂/∂x0 0 ∂/∂x2

 (4.7)

Since u(x) can be expressed as N el(x) ·U (Equation (4.5)), the differential
L operator is actually applied to the shape functions in Equation (4.6) :

ε = LN elU , BelU (4.8)

The link between σ and ε depends on the material considered. In the
specific case of linear elastic body, the relation between σ and ε becomes
linear :

σ = (σx σy σz τxy τxz τyz)t (4.9)
= D · ε (4.10)



38 Chapter 4. Maximizing Mutual Information for Prior Transformation Models

In the case of an isotropic material, D can be written as

D =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

· 1 ν
1−ν 0 0 0

· · 1 0 0 0
· · · 1−2ν

2(1−ν) 0 0
· · · · 1−2ν

2(1−ν) 0
· · · · · 1−2ν

2(1−ν)


(4.11)

where E is the Young’s modulus

Ex =
∂σx
∂εx

(4.12)

and ν the Poisson’s ratio
νxy = −εy

εx
(4.13)

In the isotropic case, νxy = νyz = νxz and Ex = Ey = Ez .

Regularization Metric : Linear Elastic Energy

The density of elastic energy stored at a given of a body under stress can be
expressed as σt · ε. This density has to be integrated in the whole volume
of interest

E =
∫
X

σtε dΩ (4.14)

Decomposing the integral in (4.14) as a sum over all elements enables
to rewrite the linear elastic energy as

E =
∑
el

Eel =
∑
el

U t ·KelU (4.15)

where the (i, j)th element of Kel is [Zienkewickz and Taylor 1987]

Kel
ij =

∫
Ωel

Belt

i DBel
j dΩel (4.16)

Kel is the local stiffness matrix associated to the element el. A global stiff-
ness matrix K can be defined by summing for each pair of nodes (i, j) the
Kel

ij entries for all elements adjacent to this node.
Using this definition, the elastic energy can be rewritten as

E =
1
2

U t ·K ·U (4.17)
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As the elastic energy is conservative, the force derivating of this energy
is equal to KU . This gives an intuitive explanation of the elastic energy
: if a node is moved in a given direction, the neighboring nodes will be
moved according to the column coefficients of the stiffness matrix. The
elastic energy therefore enforce each node to move consistently with its
neighbors. This “smooth” behavior is a crucial requirement for estimat-
ing intra-subject deformations ( e.g. induced by differences in the patient
position between two acquisitions).

Regularization Strategy

To find the non-rigid spatial correspondence between a fixed and a mov-
ing image, a classical strategy (see for example [Bajcsy and Kovac̆ic̆ 1989,
Dengler and Schmidt 1988, Gee 1999]) in image processing is the mini-
mization of a functional containing a similarity term S and a regulariza-
tion term R (a weight α is defined between S and R):

U opt = arg max
U

S(F,MU ) + α ·R(U) (4.18)

In Equation 4.18, U is the vector of parameters modeling the displacement
field from the fixed to the moving image, F and MU are the features ex-
tracted from the fixed and moving images (grey levels in our case) for the
current value of U parameters.

In this chapter, mutual information is used as similarity metric and the
linear elastic energy acts as regularization term. Equation (4.18) can thus
be rewritten as

U opt = arg max
U

MI(U) + α/2 ·U tKU (4.19)

Mesh Generation

The splitting of the volume of interest in elements following the geometry
of the objects has been a broad field of research for years. In this work, the
image domain was split into cubic elements. Each cell of this lattice is then
divided into tetrahedral elements.

The first scheme envisaged is described in Equation (4.2). Each cube
of a regular grid is split in a five tetrahedra pattern (two pattern are alter-
nated).

Interleaving of two cubic lattices (Body Centered Cubic lattice - BCC)
has been described by Molino [Molino et al. 2003]. Molino describes this
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Figure 4.2: Tetrahedral mesh generation from a regular cube lattice

lattice as initialization of a multi-resolution mesh generation strategy [du
Bois d’Aische et al. 2004, Molino et al. 2003]. BCC gives a more dense lat-
tice of nodes than a regular grid. The tetrahedrons generated from such
lattice tend to be more regular than the tetrahedrons obtained from Fig-
ure 4.2 splitting. Figure 4.3 shows the generation of the tetrahedral mesh
from the BCC lattice.

(a)

3D rendering of two interlaced

cubic grids splitting into tetrahedra

(b)

2D view of dividing a BCC lattice

in tetrahedra

Figure 4.3: Starting from a lattice of two interlaced cubic grids, a regular mesh
of tetrahedrons can be generated.
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4.3 Optimization Strategies

4.3.1 Gradient Descent

When the metric implements a first order derivative as seen in Chapter 2
for the implementations of Viola and Wells [1996; 1995] and Mattes et al.
[2003], a first optimization strategy is simply to follow the gradient direc-
tion for climbing the nearest local optimum of the cost function.

Similarity Metric Gradient As previously seen in Section 2.4.3, the
transformation Jacobian has to be passed to the metric object for being
inserted in the general metric derivatives (Eqs. (2.11) and (2.14) for Viola
and Eqs. (2.20) and (2.19) for Mattes).

In the case of a finite element transformation model as presented in
Section 4.2.2, the parameters of the transformations are simply the node
displacements. From Equation (4.4), it can be seen that the transformation
Jacobian as defined in Section 2.4.3 is simply

dui
dunl

= Nn(xi + ui) (4.20)

where by definition unl is the lth component of the displacement for the nth

node.

Regularization Metric Gradient When a second term is added to the
cost function as seen in Section 4.2.2 for ensuring a smooth matching trans-
formation, the gradient of the regularization metric has to be computed at
each iteration. A nice feature of linear elastic energy (Section 4.2.2) is the
straitforward expression of its gradient

∇Eel = α ·KU (4.21)

4.3.2 Simultaneous Perturbation Stochastic Approximation for
Gradient Descent

Simultaneous Perturbation Stochastic Approximation (SPSA) has been
firstly introduced by Spall[Spall 1998]. SPSA has attracted considerable
attention for solving optimization problems for which it is impossible or
time consuming to directly obtain a gradient of the objective function with
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respect to the parameters being optimized. SPSA is based on a highly effi-
cient gradient approximation that relies only on measurements of the ob-
jective function to be optimized. It does not require an explicit knowledge
of the gradient of the objective function.

High Dimensional Optimization Problems

SPSA is especially efficient in high-dimensional problems in terms of pro-
viding a good solution for a relatively small number of measurements of
the objective function. A well known asymptotical result about SPSA effi-
ciency is mentioned on the http://www.jhuapl.edu/SPSA web site (p
stands here for the dimension of the optimization space).

Under reasonably general conditions, SPSA
and the standard finite-difference SA method
achieve the same level of statistical accuracy for
a given number of iterations even though SPSA
uses p times fewer measurements of the objec-
tive function at each iteration (since each gra-
dient approximation uses only 1/p the num-
ber of function measurements). This indicates
that SPSA will converge to the optimal solution
within a given level of accuracy with p times
fewer measurements of the objective function
than the standard method.

A formal demonstration and associated conditions of this statement are
given in Spall [1992].

Noisy Measurements of the Cost Function

SPSA, like other stochastic search methods, accommodates noisy measure-
ments of the cost function. This is an important concern in many practical
problems like problems involving Monte Carlo simulations or incomplete
knowledge. In mutual information registration, a practical way of reduc-
ing the computing time is the selection at each iteration of random samples
to measure the joint probability density between fixed and moving image
features. This implementation introduces a noise on the measurements
of the cost function at each iteration. Moreover, some challenging regis-
tration problems involve noisy images requiring to opt for optimization
schemes designed for dealing with noisy measurements.
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Comparison with Other Stochastic Optimization Schemes

Formal theoretical and numerical algorithmic comparisons of SPSA with
other state-of-the-art optimization methods (simulated annealing, evolu-
tionary computation, etc.) have generally shown SPSA to have equal or
greater efficiency in terms of the overall cost of the optimization process
(Chin [1994], Maryak and Chin [2001], Spall [2000], Spall et al. [1999]). This
is especially the case when only noisy values of the objective function are
available. Maryak and Chin [2001] compare the performances of SPSA,
simulated annealing and genetic algorithm for a cost function of 10 vari-
ables presenting many local minima. The number of cost function evalu-
ations to get an acceptable estimate of the global optimum is about 2, 500
for SPSA and 50, 000 for the genetic algorithm. The simulated annealing
algorithm seems to perform poorly on the cost function used in this exper-
iment. Even if these figures are simply an indication, they give an idea of
the relative efficiency of SPSA.

Stochastic Gradient Estimate using Finite Differences

Finite differences are a practical solution when it is not possible to get an
analytical estimate of the cost function gradient. A classical two sided fi-
nite difference approximation estimates the ith component of the cost func-
tion y gradient by (i = 1 . . . p where p is the number of parameters) :

gki(θk) =
y(θk + ckei)− y(θk − ckei)

2ck
(4.22)

where ei is the ith unit vector given by ei = (0 . . . 1︸︷︷︸
i

. . . 0) and k refers to

the current iteration in the optimization process.
Two sided finite differences therefore require 2p computations of the cost
function. This can become quite consuming for high dimensional opti-
mization problems. An alternative is to generate a stochastic perturbation
to all the parameters at the same time. As this perturbation is regenerated
at each iteration, an iterative optimization routine will converge to an op-
timum for certain distributions of the stochastic perturbation. Spall [1998]
has shown than a simple Bernouilli with equiprobable ±1 values (with a
decreasing gain ck over the iterations) was suitable to lead to convergence.
The resulting SPSA approximation is thus

gki(θk) =
y(θk + ckδk)− y(θk − ckδk)

2ckδki
(4.23)
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In Equation (4.23), only two measurements of the cost function y are
needed since the numerator is the same for each component of the gra-
dient.

Iterative Gradient Descent

To maximize the cost function, an easy evolution rule is to update the set
of parameters at each iteration by

uk = uk−1 + akĝk(uk−1) (4.24)

where ak is defined as the learning rate. The gain sequences ak and ck are
decreasing during the iterations following

ck = c/kγ (4.25)
ak = a/(k +A)γ (4.26)

To stabilize the process, several gradient estimations can be gener-
ated with different perturbations and then averaged. This scheme makes
stochastic search algorithms easy to implement on shared memory paral-
lel architectures since several estimates of the gradient can be generated
independently.

4.3.3 Genetic Optimization

It exists a wide range of genetic optimization schemes. Basically though,
genetic optimization is a biologically inspired optimization algorithm
where a population of individuals evolves over several generations. The
various schemes of genetic optimization schemes differentiate themselves
by the strategy used for evolving from the population at the current time
step of the algorithm to the population at the next time step.

Each individual is characterized by a set of values for the optimization
parameters, called the genes. Random operators, modeling crossovers and
mutations, generate new individuals from generation to generation. The
crossover operator generates a new individual from two “parents” by in-
tertwining their genes. The mutation operator is obtained by randomly
substitution of certain array elements (in the bounds of the optimization
domain). A mutation probability has to be defined.

Furthermore a selection scheme retains good individuals (with respect
to the optimization objective) and rejects bad ones, so that the population
size remains constant. The individuals with a poor value of the objective
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function are replaced using the crossover and mutation operators. The
number of individuals to be replaced at each generation is determined
by a fixed replacement probability. This is another parameter to be fixed.
The algorithm stops when a fixed convergence to the best element of the
current population is reached. A maximal number of generations is also
fixed to avoid excessive computation time.

The reader can refer to Goldberg [Goldberg 1989] as an introductory
reference. In Section 4.7, we use the steady-state implementation of the
open-source genetic optimization library by Matthew Wall [Wall 1996].
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4.4 Application : Mutual Information based Rigid
Registration using SPSA

4.4.1 Implementation

The SPSA optimization routine was implemented in the Insight segmen-
tation and registration toolkit[Ibanez and Schroeder 2005] as an object
derivating from itkSingleValuedNonLinearOptimizer . This way,
this optimizer is integrated in the registration framework of the ITK li-
brary. ITK offers the possibility to compare several metrics, optimizers
and transformation models by using a C++ object oriented interfacing ap-
proach. In this section, we present some results obtained by interfacing
the SPSA optimizer with the Mattes[Mattes et al. 2003] implementation of
the mutual information metric and a rigid deformation model allowing
three rotations and translations.

4.4.2 CT-MR Liver Registration

The rigid alignment of a 3D MR liver image on a CT of the same subject
was performed within less than 5 minutes on a standard computer. The
Mattes Metric used 50 bins in the fixed and moving image and 10 000
samples randomly selected in the fixed image domain. The results are
shown in Figure 4.4.

4.4.3 Brain MR T1/T2 Registration and DTI/MR Registration

Figures 4.5 and 4.6 illustrate two rigid registration results. Figure 4.5
shows the alignment of an intra-operative brain T2 image on a pre-
operative T1 image of the same subject. Figure 4.6 shows the matching of
a T1 intra-operative image on the baseline component of a pre-operative
Diffusion Tensor Image (DTI). The DTI modality is over-imposed on the
other image and covers a more limited region than the T1 image. The DTI
image was therefore chosen as fixed image and the transformation was
inverted for visualization purpose.
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(a) (b) (c)

Figure 4.4: SPSA optimization of mutual information for rigid registration of
CT-MR liver images.
Sub-figure (a) shows a slice of the - fixed image - CT. The contours of the target
liver have been highlighted for visualization only (the algorithm is blind to these
contours). Sub-figure (b) shows the initial alignment given to the algorithm.
After optimization using the SPSA routine, the resulting alignment is plotted in
Sub-figure (c).

4.5 Non-rigid FEM Registration : Preliminary Exper-
iments

In this section, we present the result of preliminary experiments obtained
using the hybrid cost function of Equation (4.19) and a simple gradient
descent optimization scheme. The implementation of the mutual informa-
tion metric is these experiment is the Viola and Wells [1996; 1995] imple-
mentation provided by the ITK [Ibanez and Schroeder 2005] toolkit.

4.5.1 Synthetic Luminance Distortion

The purpose of this experiment was to evaluate the robustness of the MI
criterion in the presence of significant nonlinearities between the intensi-
ties of the scans to be aligned. We evaluated both MI and L2 metrics.

For this experiment, we have first rigidly registered a pre-operative
MR image on an intra-operative image of the same patient. For rigid regis-
tration Powell’s optimization method was used to identify a rigid transfor-
mation maximizing the mutual information metric. The implementation
is similar to [Maes and Collignon 1997].
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Figure 4.5: Rigid registration of pre-operative MR T1 image on a intra-operative
T2 image of the same subject.
The first image shows the pre-operative -target- image. The intra-operative image
is shown with a center to center alignment in the middle. After optimization of
the mutual information metric, the intra-operative registered image is plotted in
the right part of the figure.

Following the 3D rigid registration, a particular slice was extracted in
the registered volumes and the brain was manually segmented in this spe-
cific slice. Then, to evaluate the robustness of the behavior of the mu-
tual information criterion, we applied a luminance distortion to the intra-
operative image. The distorted luminance L′(x) is obtained from the orig-
inal L(x) by

L′(x) = exp
(
L(x)
C

)
(4.27)

The source (preoperative image) is shown in Figure 4.7(a) and the cor-
rupted target image is shown in (b). Figures 4.7(c) and 4.7(d) show
the result of the registration process using a mutual information crite-
rion(warped image and resulting joint histogram are presented). Figures
4.7 (e) and (f) show the same results with a classical Root Mean Square
(RMS) error. It is clear that the RMS criterion does not converge to a sat-
isfying matching. The resulting joint histogram is not as compact as the
result of an MI metric optimization.

4.5.2 Synthetic Transformation and Landmark Validation

In this experiment, a synthetic brain shift transformation was applied to a
segmented slice of a pre-operative image. The synthetic displacement field
is an arctangent in the vertical y direction. A set of landmarks (shown on
Figure 4.8) was selected on the main contours of the image (brain, tumor
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Figure 4.6: Registration of the baseline component of a pre-operative DTI image
on a T1 MRI acquired in the operating room.
The DTI image (with a clearer contrast) was mapped on the T1 image. Manually
registration would be made difficult in that case due to the slight slope in the
acquisition plane of the DTI image.

and ventricles). In this case, the ideal transformation is known, and the
registration error can be precisely evaluated. The first part of Figure 4.8
shows the initial set of landmarks (dots) and the target set of landmarks
(crosses). The second part of Figure 4.8 match the target landmarks with
the landmarks positions transformed by our algorithm. A significant de-
creasing of the registration error was observed.

Registration error (voxels) mean min. max.
initial 2.040 0.029 3.120
final 0.697 0.006 2.126
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4.5.3 Intra-Operative Case

This experiment illustrates the registration of a pre-operative SPGR im-
age to a post-operative MR T2 image of the same patient. These images
were first rigidly registered in 3D as in the first experiment. In this case,
a multi-level pyramid registration was used to catch the important rota-
tion around the z axis. Two slices have been segmented manually and
non rigidly registered. A multi-resolution strategy has been used. In this
scheme, the transformation found in the former level is applied to each
node of a finer mesh as initialization for the next level. The Figure 4.9
shows the result of the non rigid registration with and without regulariza-
tion term (R in Eq. 4.18). It is clear that the ventricles are better matched if
a regularization term is included.
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(a) Source (c) MI reg. (e) RMS reg.

(b) Target (d) MI reg. scatterplot (f) RMS reg. scatter-
plot

Figure 4.7: Synthetic luminance distortion for evaluating MI robustness: 2D
experiment.
A T1 weighted preoperative scan (a) was registered on a T1 weighted postoper-
ative scan with an exponential luminance distortion (b) using a finite element
elastic model. Two metrics are compared. Sub-figure (c) shows the deformed im-
age with a mutual information criterion. Its joint histogram is plotted in the
sub-figure (d). Sub-figure (e) shows the deformed image with a root mean square
criterion. Its joint histogram is plotted in the sub-figure (f). The use of a MI
metric leads to a better match and the resulting joint histogram is more compact.
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Figure 4.8: Synthetic transformation and landmark validation: 2D experiment.
Set of landmarks for registration accuracy measurements (left). Synthetic trans-
formation on landmarks (middle). Comparison between target and landmarks
after registration (right).
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(a) Source (c) MI result with
regularization

(e) MI result without
regularization

(b) Target (d) With regul. (f) Without regul.

Figure 4.9: Intra-operative brain shift case : 2D experiment.
A T1 weighted pre-operative scan (a) was registered on a post-operative T2
weighted scan (b) using a finite element elastic model and a mutual information
metric. Sub-figure (c) shows the deformed image with elastic regularization and
the corresponding deformed mesh is plotted in sub-figure (d). If no regularization
term is included in the optimized cost function, some inconsistencies appear in
the resulting deformation field (especially in the ventricles area) as shown is (e)
and (f).
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4.6 Application : Non-rigid Registration of Pre-Oper-
ative and Intra-Operative Images

4.6.1 Background and Related Work

The development of fast non-rigid automatic registration algorithms is an
important issue to fuse during surgery pre-operative and intra-operative
data. T1-weighted SPGR MRI is used during brain surgery at Brigham and
Women’s Hospital (Boston, MA) for intra-operative surgical navigation.
However, after the injection of a contrast agent (Gd-DTPA) to emphasize
the tumor, the intensity properties of the tumor and surrounding tissues
may be significantly altered. This can disrupt registrations which assume
a linear dependence between the voxel intensities of the scans [Hata et al.
1999; 2000]. The surgery can also induce locally important modifications
between the pre-operative and intra-operative modalities (tumor resec-
tion, hematomas, . . . ). Local similarity measures such as block matching
could diverge in these areas. Mutual information(MI) has been extensively
used in medical images registration. It has be proven to be robust to con-
trast changes. MI is based on the joint histogram between the images to
be aligned and is therefore a global metric which can be robust to local
dissimilarities between the images.

In MRI-guided prostate biopsy, tumor foci can be better localized and
identified on the pre-operative 1.5-T MRI than in the 0.5-T used for sur-
gical navigation. For this reason, deformable registration of the pre-
operative MRI to the intra-operative MRI has to be investigated. MR and
CT images of the liver are relevant to assess tumor coverage, which is
the most decisive parameter used for a successful procedure after image
guided therapy such as RF-Ablation or cryotherapy. They also play an
important role in providing information about the ablation of healthy tis-
sue. A contrast enhanced pre-procedural MR (usually within seven days
before), giving information about the tumor size and location, has to be
matched with the contrast enhanced post-procedural MR (24 hours post)
which provides relevant information about the area of necrosis. Rigid
and non-rigid deformations caused by breath-hold pattern and the phys-
iological changes in the micro-structure of the liver require the develop-
ment of non-rigid registration tools. Also the intervention itself leads to
a change in the liver shape. As well as in MR guided neuro-surgery, con-
trast changes are important between the two images to be registered in
these two applications. In the liver application, some organs (e.g. stom-
ach, colon, small bowel, . . . ) can vary in an important way between the
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two acquisitions. For these reasons, a robust and global similarity mea-
sure like the mutual information metric sounds like a well adapted choice.

Ferrant[Ferrant et al. 2002; 2001; 2000] described the use of a finite ele-
ment mesh as an efficient set of shape functions to model non-rigid defor-
mations of the brain over the course of a surgery. Intra-operative segmen-
tation of the brain was used to estimate displacements of the ventricles
and cortex contours. These surface deformations were then propagated
through the whole volume using a linear elastic interpolation. In this ap-
proach, the quality of the mapping depends on the segmentations in the
source and target images. The quality of the match can be increased by
adding more surfaces (i.e. more boundary conditions) but no guaranty is
given about the quality of the registration in regions far from the bound-
ary surfaces. The use of a volumetric similarity measure does not favor
specific regions than others and does not require the use of intra-operative
segmentations. Mattes, Ruekert, Bookstein, Davis and al [Bookstein 1989,
Davis et al. 1997, Mattes et al. 2003, Ruekert et al. 1999] have presented a
mutual information based non-rigid registration using B-Spline Radial Ba-
sis kernel Functions(RBF). RBF kernels can lead to a non-bijective function
if two neighboring splines have an opposite contribution to the displace-
ment field (which is not the case with volumetric meshes if to neighboring
nodes are moving in opposite directions).

4.6.2 Registration Strategy

Objective Function

The cost function used in this work is the sum of mutual information and
elastic energy (Equation (4.19)). The weight α remains a critical parameter
to be chosen by the user. For coarse meshes, a smaller α can be used since
the deformation model does not allow high frequencies in the deforma-
tion field. α can then be increased when finer meshes are considered (see
Section 4.6.2).

Similarity Measure

The similarity measure we used is the Mattes [Mattes et al. 2003] imple-
mentation of mutual information. The main advantage of this implemen-
tation is to perform a quick estimation of the joint and marginal probability
densities by using histograms. To have a cost function with sufficient con-
tinuity properties is a necessary condition for optimization convergence.
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Therefore, the histograms are smoothed by a continuous kernel.

Regularization Term

The regularization term R in (4.18) provides a mechanism for including
prior information regarding the nature of the deformation field. A usual a
priori assumption is a smooth deformation field (see [Bauchemin and Bar-
ron 1995] for different regularization terms applied to optical flow tech-
niques).

In this work, the regularization term is the linear elastic energy defined
in Section 4.2.2. This regularization term acts to propagate the effect of
active regions (regions where changing the amplitude of local basis func-
tions significantly changes the value of the similarity metric) to the whole
image domain.Segmentation of the fixed image is not required but allows
to employ different material characteristics for different anatomical struc-
tures.

Implementation

The cost function given in Equation (4.19) is optimized using a gradient
ascent strategy as described in Section 4.3.2. The Mutual Information gra-
dient regarding u is estimated using the SPSA approximation described in
Section 4.3.2. The gradient of the elastic energy is simply equals to α ·Ku
(Equation (4.21)) where K is the stiffness matrix described in Section 4.2.2
and is computed once for all before starting the SPSA iterations.

The flowchart in Figure 4.10 summarizes the following steps of our
implementation :

• Step 1 - The derivative of the mutual information metric is estimated
for each vertex of the mesh using a finite difference estimation. The
vertices where the norm of the derivative is above a fixed threshold
are selected as ’active vertices’ for the MI gradient SPSA approxima-
tion. Only the contribution of the points belonging to the adjacent
elements of a disturbed vertex (in the x,y or z directions) needs to
be recomputed in the joint histogram. This ‘active’ part of the joint
histogram is smoothed by the use of a B-Spline kernel to enforce
smooth variations of the objective function[Mattes et al. 2003]. The
use of a Symmetric Multi-Processor (SMP) architecture enables the
delegation of the computation of mutual information for different
perturbations to several threads.
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Figure 4.10: Non-rigid registration flowchart for a finite elements deformation
model with SPSA optimization.

• Step 2 - At each iteration, each CPU performs a different perturba-
tion of the subset of active vertices to stochasticly estimate the mu-
tual information gradient. As in the first step, only the contributions
of the points belonging to elements adjacent to active vertices are
recomputed.

• Step 3 - These estimations are then averaged and added to the gra-
dient of the elastic metric (α ·Ku) before updating the current vector
u of parameters.

• Step 4 - The algorithm loops to the second step until a convergence
threshold is reached. After optimization, the resulting transforma-
tion is applied to the image and the displacement field is stored to
be reloaded at the next resolution. In some applications, it is useful
to update the set of active vertices by recomputing a full derivative
with finite differences

This approach can easily be extended to a “coarse to fine” estimation of
the displacement field : the algorithm is first run with a low resolution
mesh. The resulting displacement field after optimization is then applied
to the nodes of a finer mesh as initial condition for the next level. A sim-
ilar approach allows to work with images pyramids by aligning in a first
time sub-sampled versions of the fixed and moving images. The resulting
displacement field can then be interpolated and applied as initialization to
the next level.
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4.6.3 Prostate Biopsy

In this application, an intra-operative image of the prostate is acquired
during prostate biopsy. The tumor and internal structures of the prostate
are better localized on the pre-operative image of the prostate. The di-
mensions of the intra-operative image are 256x256x20 with a voxel size
of 0.78125x0.78125x5 mm3. The pre-operative image size is 512x512x30
with a 0.390625x0.390625x5 mm3 voxel size. The pre-operative image suf-
fers from important artifacts in the gray levels, due to the presense of an
endo-rectal coil. Since mutual information is a similarity measure based
on the image densities, such artifacts can lead to a bad convergence of the
optimization. A bias correction had to be applied before the registration
process. The approach used is described in Mangin[Mangin 2000, Weisen-
feld and Warfield 2004]. Figure 4.11 shows the non-corrected (a) and the
corrected (b) image. It can be seen that the bias is concentrated in this
case in the top left corner of the image. The bias model used here allows
more degree of freedoms than the model described in Section 4.7.3. Fig-
ure 4.12 shows how a rigid registration process can diverge in the absence
of a pre-processing bias correction step.

The pre-operative and intra-operative images are then rigidly regis-
tered with the same method as described in the first experiment. The intra-
operative (target) image is plotted in Figure 4.13(a). The pre-operative im-
age before registration (center to center translation) is plotted in sub-figure
(b). The result of the rigid registration is shown in Figure 4.13(c). The rigid
transformation is taken as the initial condition for the non-rigid algorithm
described in section 4.6.2. Several resolutions were used to approximate
the deformation between the two images. The first mesh resolution for the
regular grid before splitting in tetrahedra was 64x64x4 pixels, the second
resolution uses a 32x32x4 resolution and the finest mesh 16x16x2. For val-
idation purposes, the prostate volume was segmented in the two images
before registration. The overlap between the source and target volumes
was 72% after rigid registration and 85.4% after non-rigid registration (Fig-
ure 4.13(d)).
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(a) Without correction. (b) With correction.

Figure 4.11: Bias correction.
This figure shows the effect of the bias correction using the implementation de-
scribed in [Weisenfeld and Warfield 2004] and [Mangin 2000]. This correction
is a necessary pre-processing to avoid a divergence of the registration process as
shown in Figure 4.12.
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(a) Intra-op (b) Pre-op : Initial

(c) Rigid reg.

with bias corr.

(d) Rigid reg.

without bias corr.

Figure 4.12: Bias field inducing a divergence of the registration process
This figure shows how the potentially large bias field due to the presence of an
endo-rectal coil can lead to a divergence of the registration process. Subfigure
(a) shows an axial slice of the intra-operative image (taken in this experiment
as the fixed image) with the prosate boundary. Sub-figure (b) shows the initial
alignment of a bias corrected version of the pre-operative image. The offset to
recover can be seen by the distance to the intra-op. prostate contour (redrawn
from Sub-figure (a)). Sub-figure (c) shows a satisfactory alignment obtained by
maximizing mutual information between (a) and (b). Sub-figure (c) shows the
mis-alignment got after maximizing mutual information if the bias in the pre-
operative image is not corrected.
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(a) Intra-operative image (b) Pre-operative image

(c) Rigid reg. of (b) to (a)(d) Non-rigid reg. of (b) to (a)

(e) detailed of (a) (f) detailed of (d)

Figure 4.13: Rigid and non-rigid registration of a 1.5 pre-operative image of the
prostate to 0.5-T intra-operative image(a).
The initial condition for the rigid registration is shown in (b). The rigid regis-
tration was performed using a stochastic gradient descent (SPSA) optimizer and
a mutual information metric, the result is shown in (c). The application of our
non-rigid registration strategy is shown in (d), both the contours and the internal
structures are closer to the target intra-operative image.
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4.6.4 RF Ablation of Liver Tumors

In this experiment, our non-rigid registration algorithm was used to
efficiently compare the pre-procedural tumor volume with the post-
procedural necrosis after RF ablation.

First, the pre-procedural image is rigidly aligned to the post-procedu-
ral image. The dimensions of the pre-procedural image are 256x256x91
with a 1.5625x1.5625x2.5 mm3 voxel size and 256x256x80 (with a 1.3672x-
1.3672x2.5 mm3 voxel size) for the post-procedural image. The result of the
alignment is shown is Figure 4.15(a) and (b). This rigid registration uses
the Mattes[Mattes et al. 2003] implementation of the mutual information
metric. The rigid registration algorithm has been described in Section 4.4.

Next, the non-rigid registration described in Section 4.6.2 was applied
to map the post-procedural image to the rigidly aligned pre-procedural
image. For this case, an image pyramid was used for faster computation.
At the first level of the pyramid, three resolutions were used to gradually
refine the tetrahedral volumetric mesh. The contours of the rigidly aligned
pre-procedural liver are mapped in Figure 4.15 on the post-procedural im-
age before (a) and after (c) non-rigid registration. Figures 4.14 (a) and (b)
show the difference between the source and target livers before and after
non-rigid registration. In this experiment, the displacement is localized in
the left liver lobe. After segmentation of this lobe in the fixed and moving
image, an improving in overlapping from 62.79% to 94.93% was observed
after non-rigid registration. No significant change is observed in the right
lobe.
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(a) Before registration (b) After registration

Figure 4.14: Non-rigid registration of MR liver images.
Sub-figures (a) and (b) show the liver surface (obtained from manual segmenta-
tions ) in pre and post-procedural images before and after non-rigid registration.
These contours are not used during the non-rigid registration.
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(a) Post-procedural image

(b) Pre-procedural image

(c) Deformed post-procedural image

Figure 4.15: Non-rigid registration of MR liver images.
The pre-procedural (a) MR image of the liver was first aligned on a post-
procedural (b) image of the same patient. The non-rigid registration of (a) on
(b) is shown in (c).
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4.6.5 Brain Shift Estimation

In this section, the algorithm described in section 4.6.2 was applied for
compensating the brain shift occurring during surgery after craniotomy.
Such deformations cause misalignment of the surgical planning with re-
spect to the preoperative imaging it is based on. The major factors of
these non-rigid deformations include the gravity, the tissue retraction or
resections caused by the tumor ablation, and the cerebrospinal fluid leak-
age or draining. Intra-operative MR images are acquired by an 0,5 T
Open Magnet System (Signa SP, GE Medical Systems, Milwaukee,WI) (
see Nabavi[Nabavi et al. 2001] for a description of the intra-operative pro-
cedure). Registration results for two patients are presented in this paper.
A first image before skull opening is acquired (dimensions are 256x256x60,
the voxel size is 0.94x0.94x2.5 mm3). The brain is then manually seg-
mented on this image.

In a pre-processing step, the pre-operative image was rigidly aligned
with the intra-operative image. This registration process has been de-
scribed in Section 4.4.

Estimating the non-rigid displacement from the pre-operative brain to
the intra-operative is made difficult by the artifacts induced by the skull
opening. Furthermore, where the skull is present in both images, it im-
poses a null displacement which brings a discontinuity with the displace-
ment of the brain surface a few millimeters below. Such discontinuities
are difficult to be estimated by a linear elastic model such as described in
Section 4.2.2. Since we are mainly interested in modeling the deformations
of the brain, we use a segmentation of the pre-operative brain as a mask to
measure mutual information. The linear elastic model will then propagate
the brain deformations outside the mask which means that the deforma-
tion will have no physical meaning outside this mask. No segmentation of
the intra-operative image is required since mutual information is a statis-
tical measure based on the joint intensity distribution between the source
and target images.

Figure 4.16 shows in the first column the segmented pre-operative
brain. The second column plots the target intra-operative brain and
the third column shows the deformed pre-operative brain on the intra-
operative image. The displacement field found by the registration algo-
rithm is defined from the pre-operative to the intra-operative image. On
the other hand, to warp the pre-operative on the intra-operative image,
the displacement needs to be defined from the intra-operative image to
the pre-operative image. Therefore, the resulting transformation has been
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(a) Pre-operative (b)Intra-operative (c) Deformed pre-op.

Figure 4.16: Non-rigid registration of brain shift MR images.
Case 1 - Non-rigid registration from a pre-operative image to an intra-operative
image of the same patient. For visualization purpose, the intra-operative contours
of the brain are displayed over the pre-operative brain (a), the intra-operative im-
age (b) and the deformed pre-operative brain on the intra-operative image (c). The
rectangle shows a region where a local similarity measure such as block match-
ing[Rexilius 2001] could fail to find similarities between the pre-operative and
the intra-operative brain.

inverted. A simple inversion scheme is described at Figure 4.18. A new
mesh is generated by applying the optimal displacements to the mesh ver-
tices. The displacements associated to each vertex of the new mesh are
simply the opposite of the initial displacements as shown in Figure 4.18.
This solution is exact at the mesh vertices but inaccurate inside the ele-
ments. Therefore, this inversion can be inaccurate for coarse meshes.

For visualization purposes, the contours of the target intra-operative
brain are mapped on the pre-operative image before (Figure 4.16(a))and
after (Figure 4.16(b)) registration. This intra-operative segmentation is not
used during the registration. The boxed area in Figure 4.16 shows a region
of local dissimilarity between the pre-operative and the intra-operative
image where a local matching strategy could fail to find correspondences.
Figure 4.17 plots the results in the same way as in Figure 4.16 for the sec-
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(a) Pre-operative (b) Intra-operative (c) Deformed pre-op.

Figure 4.17: Non-rigid registration of brain shift MR images.
Case 2 - The results of the non-rigid algorithm are plotted in the same way as
in Figure 4.16. Only the pre-operative segmentation of the brain is used by the
registration algorithm as a mask to measure the matching. This is done to be
robust to artifacts induced by the opening of the skull. The rectangle shows a
region where deformation induced by surgery and contrast changes could disturb
a mean square error criterion.

ond subject of this work. For this case, a contrast agent was injected be-
tween the first and the second image acquisition. This makes the tumor
light up in the second scan. Such contrast change between the modal-
ities could disrupt registrations assuming a linear dependence between
the voxel intensities of the scans[Hata et al. 1999; 2000].

Figure 4.19 plots the estimated displacement field by the registration
algorithm. The gravity is acting from the top to the low of the axial views
and the right to the left of the sagittal views. The first column plots the
displacement field for the first case (same as in Figure 4.16) and the sec-
ond column the second case (same as in Figure 4.17). The deformation
estimated in the second case has an important component in the z direc-
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Figure 4.18: Non-rigid transformation inversion.
This figure shows the approximation used to inverse the transformation at the
end of the optimization. This allows to compute the displacement field from the
intra-operative to the pre-operative coordinate system even if the transformation
was computed in the other direction during the optimization.

tion. Therefore, a simple slice to slice 2D registration would be inaccurate
in this case.

To estimate the registration accuracy, we plot the image difference be-
fore and after registration since in this case, the modality for acquiring the
pre-operative image and the intra-operative image are the same, the dif-
ference should tend to zero (except in regions where the contrast agent is
emphasizing the lesion as well as in resected or cut areas). The image dif-
ference before and after registration is plotted in Figure 4.20(a,b) for the
first case and in Figure 4.20(c,d) for the second case.
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(a) (b)

(c) (d)

Figure 4.19: Non-rigid brain shift displacement field.
The displacements fields are plotted in axial (first row) and sagittal (second row)
for the first case (a,c)(see figure 4.16) and the second case (b,d)(see figure 4.17).
Gravity is acting from the top to the bottom on the axial view, and from the right to
the left on the sagittal view. In the second case, deformations induced by surgery
cause a more complex displacement field than in the first case.
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(a) (b)

(a) (b)

Figure 4.20: Brain shift : difference images before and after registration.
Case 1 (a,b) - The difference before (a) and after (b) registration is plotted for the
first case (see figure 4.16) to assess registration accuracy. Case 2 (c,d) - The
difference before (c) and after (d) registration is plotted for the second case (see
figure 4.17) to assess registration accuracy.
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4.7 Application : Simultaneous Registration and Bias
Correction of Brain Intra-Operative MR Images

4.7.1 Introduction

Chapter 2 has given a short review of the wide range of registration appli-
cations based on the maximization of mutual information. The success of
this similarity measure comes from its ability to catch complex dependen-
cies between multi-modal signals such as a Magnetic Resonance (MR) and
Positron Emission Tomography (PET).

Mutual information is in fact a non-linear measure of the divergence
between the marginal and joint distributions of the gray levels of the
source and target images. Therefore the registration can fail if one of
these images suffer from spatially variant luminance distortions. Mutual
Information based registration is obviously able to deal with uniform lu-
minance bias. For this reason, it is important to examine robust ways to
correct luminance deformations before or while performing the registra-
tion.

Different approaches can be followed to correct the bias field in the
gray levels of the intra-operative image. First, a model of the luminance
distortions must be chosen and inverted. Secondly, to optimize the param-
eters of this model, an optimization strategy must be defined.

If no other information is available, a first possibility consists of achiev-
ing the correction using the biased image itself because luminance distor-
tions introduce disruptions in the statistical distribution of the image. Of
course, the correction strategy is easier if an a priori model on the marginal
distribution of the unbiased image is available. Van Leemput[Leemput
et al. 1999] et all introduced Gaussian assumptions about the distribution
of each class in the input image. This leads to simultaneous classification
and bias correction.

In the context of intra-operative image acquisition, a first diagnosis MR
image is acquired before surgery. To calibrate the intra-operative device,
a second image acquisition is performed in the operating room before
surgery. Because of the small size of the magnets and the short acquisition
time, the images produced by such devices are often subject to luminance
distortions, and are characterized by a limited field of view and low spa-
tial resolution. Therefore, it would be interesting to perform a registration
between the two modalities. Since registration can fail if one of the two im-
ages is biased[Butz et al. 2002], it is convenient to examine simultaneous
registration and bias correction algorithms. The resulting bias correction
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will be based on the preoperative unbiased MR image.

4.7.2 Marginal Bias Correction

Bias correction Model

In our implementation, we used the model developed by Likar[Likar et al.
2000] to correct the distortions in the intra-operative image. It is assumed
that it is possible to get an unbiased version U(~x) of the biased luminance
N(~x) with multiplicative and additive corrections

U(~x) = M(~x) ·N(~x) +A(~x) (4.28)

The additive and multiplicative bias corrections consist of a weighted
polynomial basis functions sums.

A(~x) =
∑
i

aiAi(~x) =
∑
i

ai
Pi(~x)− ani

aei
(4.29)

M(~x) = 1 +
∑
i

miMi(~x) = 1 +
∑
i

mi
Pi(~x)−mni

mei
(4.30)

where Pi(~x) is a polynom with degree lower than a fixed order.
The coefficients noted by aei and mei normalize ai and mi to get co-

efficients evolving in the same dynamic. This is particularly useful while
optimizing. The role of ani and mni coefficients is to keep the mean of
the luminance function. This is made to guarantee a certain stability to the
transform. More concretely, it can be written by the following conditions
(NΩ refers to the number of voxels in the input image)(see Likar[Likar
et al. 2000] for more details)

• the mean preserving condition :

1/NΩ ·
∑
~x∈Ω

U(~x) = 1/NΩ ·
∑
~x∈Ω

N(~x) (4.31)

• and parameters normalization conditions :

1/NΩ ·
∑
~x∈Ω

|N(~x) ·Mi(~x)| = 1

1/NΩ ·
∑
~x∈Ω

|Ai(~x)| = 1 (4.32)
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The mean preserving condition (4.31) can be rewritten as

1/NΩ

∑
i

[∑
Ω

miN(~x)
Pi(~x)−mni

mei
+
∑
Ω

ai
Pi(~x)− ani

aei

]
= 0 (4.33)

To get mean preserving and normalization coefficients independent from
mi and ai, a possible choice is to take∑

Ω

N(~x)(Pi(~x)−mni) = 0 ∀i (4.34)

and∑
Ω

(Pi(~x)− ani) = 0 ∀i (4.35)

This leads to a really simple expression

mni =
∑

ΩN(~x)Pi(~x)∑
ΩN(~x)

(4.36)

and

ani =
1
NΩ

∑
Ω

Pi(~x) (4.37)

It can be shown[Solanas and Thiran 2001] that the same conditions
leads to

mei =

{
1
NΩ

∑
Ω(N(~x)(Pi(~x)−mni)) ifMi(~x) > 0

1
NΩ

∑
Ω(N(~x)(mni − Pi(~x))) ifMi(~x) > 0

(4.38)

aei =

{
1
NΩ

∑
Ω(Pi(~x)−mni) ifMi(~x) > 0

1
NΩ

∑
Ω(mni − Pi(~x)) ifMi(~x) > 0

(4.39)

Cost Function

In former section, a bias correction model was introduced. The best ai and
mi coefficients have now to be chosen by optimizing an appropriate cri-
terion. In the following, we show how a simple criterion derives from a
Maximum Likelihood (ML) approach. If a bias correction vector C con-
tains the ai and mi parameters, and ~y is defined as a vector containing the
gray values yi of all the pixels in the input image, the best bias correction
will be found by a classical ML approach

Copt = arg max
C

log(p(~y|C)) (4.40)
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where p denote the estimated probability density function using a classical
estimation technique (histogram, Kernel Estimation,. . . ).

It is now assumed that all the voxel intensities are statistically inde-
pendent[Leemput et al. 1999]. The probability density distribution of the
image ~y for a given model becomes

p(~y|C) =
∏
i

p(yi|C) (4.41)

Injecting (4.41) in (4.40) leads to the maximization of

NΩ∑
i=1

log(p(yi|C)) (4.42)

The sum in (4.42) provides (with an NΩ factor) an estimation of
E{log(p(yi|C))}. It is now obvious that maximizing (4.42) is equivalent
to minimizing the marginal entropy of the ~y image given the model C de-
fined by

H(~y) = −E{log(p(~y|C))} (4.43)

This leads naturally to the conclusion that the bias field produces a disper-
sion in the probability distribution of the input image. The use of marginal
entropy as criterion to correct this dispersion is an efficient (but radical)
way to compensate the bias. Of course, the assumption that all voxel in-
tensities were independent is not really satisfied... To take into account the
dependence between intensities of adjacent pixels, other criterions can be
introduced.

For example, it is possible to use conditional entropy between voxel
values and their neighbor[Solanas and Thiran 2001]. Such strategy avoids
divergence in the optimization process (minimizing entropy can lead to
change the density probability function into a Dirac delta function !).

Another optimization strategy is the use of conditional entropy be-
tween the voxel intensities and the gradient norm of the input image.
The gradient takes into account dependencies between a voxel and its
neighbor. There is thus sense to use it as an a priori knowledge (see
Solanas[Solanas and Thiran 2001] fore more details).

4.7.3 Joint Registration and Bias Correction

Cost Function

As described in section 4.7.2, a possible bias correction strategy is the mini-
mization of the marginal entropy in the input image. In the intra-operative
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(ODIN) case, another approach could be using the unbiased preoperative
image as a reference to correct the bias.

Instead of marginal entropy, the criterion to optimize becomes a robust
similarity measure between the preoperative and intra-operative images.
It remains now to determine the most suitable criterion. The theory devel-
oped by Butz[Butz et al. 2002, Butz and Thiran 2002] about multi-modal
signal processing introduces a general framework about robust similarity
measures. IfX and Y are the features (luminance, norm of luminance gra-
dient, . . . ) extracted from the source and target image, a class of similarity
measures can be derived from the general expression

en(X,Y ) =
MI(X,Y )n

H(X,Y )1−n
withn ∈ [0, 1] (4.44)

where MI(X,Y ) = H(X) +H(Y )−H(X,Y )

In (4.44), H(X,Y ) represent the Joint Entropy between features X and Y .
The Mutual Information between X and Y is noted by MI(X,Y ). Both
Joint Entropy and Mutual Information are estimated using a joint his-
togram between random variables X and Y . It can be observed that equa-
tion (4.44) summarizes different well known similarity measures used in
image registration.

1. If n = 0, maximizing (4.44) is equivalent to minimizing the Joint En-
tropy between X and Y . Because H(X,Y ) ≥ H(X) and H(X,Y ) ≥
H(Y ), this approach consist of selecting efficient features (i.e. features
with low entropy). This is similar to the bias correction approach we
discussed in former section.

2. If n = 1, maximizing (4.44) is equivalent to maximizing Mutual In-
formation. Butz[Butz et al. 2002] shows that this approach is equiv-
alent to minimizing a lower error bound on the probability error.
Nevertheless, it has been observed (see Gil[guez Gil 2002]) that Mu-
tual Information will select features containing as much information
as possible. This could increase needlessly the marginal entropy of
selected features. If one of these features is the output of a poly-
nomial bias correction filter, this could increase the bias instead of
correcting it.

3. If n = 1
2 , a compromise is made between the efficiency of fea-

tures (H(X,Y )) and the minimization of the lower error bound
(MI(X,Y )). This criterion is equivalent to Normalized Entropy.
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In our case, it seems to be the best compromise to correct the bias
and perform a registration simultaneously.

To evaluate the criterion (4.44), an estimation of the joint probability
density between X and Y is needed. This is usually performed using joint
histograms[Maes and Collignon 1997]. The quantization step in the his-
togram (i.e. the number of bins) in both axis is an important parameter to
be fixed in the registration process. It can be represented by a first feature
selection filter before evaluating the criterion. This filter simply consists in
a first quantization of the input images in order to select the representative
information in both images discarding the redundant noise. Butz[Butz
et al. 2002] has shown that an optimal number of bins in both images can
be selected with an adapted similarity measure. In as much that decreas-
ing the number of bins obviously decreases the marginal entropies of the
image representations, simply maximizing Mutual Information is danger-
ous and converges to the maximum number of bins (high entropy fea-
tures). With a Normalized Entropy criterion, a compromise can be made
between Mutual Information and low entropy characteristics. This effi-
cient behavior explains why Normalized Entropy is preferred to perform
a correct quantification in the modalities to register.

Bias and Affine Transformations

If we note by T the spatial transform applied from ODIN image to the
diagnosis image, and by P the polynomial transform applied to the gray
levels of the ODIN image, the optimization objectives can be formalized
as follows

[C,~t, nx, ny] = arg max
C∈Rq ,~t∈Rp,nx∈Z+,ny∈Z+

en{P (Onx(X)), T−1(Dny(X))}

(4.45)
whereX is an uniform Random Variable on the space domain of the ODIN
image, Onx and Dny denote the luminance functions in the ODIN and di-
agnosis image quantized with nx and ny bins. During the optimization
process, the transformation is applied to the diagnosis image and resized
to the same domain as the ODIN image.

The spatial transform is implemented in our case by a rigid transform
(3 translations and 3 rotations). The polynomial transform we used is
multiplicative and linear, 3 mi independent parameters have to be de-
termined. The number of bins in both images was also optimized. The
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Spop population size 500
pconv convergence percentage for termination condition 0.001
ngen maximum number of generations 50
pmut mutation probability 0.5
pcross crossover probability 0.7
preplace proportion of indiv. to be replaced at each generation 0.5

Table 4.1: Genetic Optimization parameters.

resulting number of parameters to optimize was thus set to 11. For visual-
ization purpose, the spatial transform is inverted before being applied to
the ODIN image. A global view of the algorithm is sketched in figure 4.21.

Optimization Method

We investigated the use of different optimization methods. Powell op-
timization seemed not robust enough to perform a correct registration.
Moreover, these kind of optimization algorithm can not deal with a com-
plex search domain. In our case, the number of bins (nx and ny) are dis-
crete numbers whereas polynomial and rigid (translation and rotation) co-
efficients are real parameters. We have finally chosen a genetic algorithm
(see Section 4.3.3) and used the GALIB [Wall 1996] library implementing
different genetic algorithms. The particular values we used in our imple-
mentation are presented in table 4.1.

In our case, an acceptable initial condition is needed due to the lim-
ited field of view of the ODIN modality. It is also necessary to get rea-
sonable computation time. The search domain for the genetic routine is a
(10x10x10)mm box in translation centered on the initial condition. The
bounds for polynomial bias correction were fixed to [−10, 10] for each mi

coefficient. The values for pmut and pcross (c.f. table 4.1) are bigger than
usual. An important value for pmut avoids convergence to local minima
because of exploring the whole search domain.

4.7.4 Results

The Genetic Algorithm (figure 4.21) simultaneously optimizes three blocks
: the number of bins in the preoperative and intra-operative modalities,
the polynomial transform parameters (bias correction) and the geomet-
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OPTIMISATION PROCESS :

ODIN image

Diagnosis image

-

-

Polyn transf. : Pα1

Geom transf. : T−1
α2

@@R

���

NE(X,Y )

�GA OPTIMIZATION

6

nbin = 2

npolyn = 3

-

ngeom = 6

-

VISUALISATION PROCESS :

ODIN image - Polyn transf. : Pα1

- Geom transf. : (T−1
α2

)−1 - RESULT

Figure 4.21: Algorithmic flow chart
Our algorithm uses a genetic optimization routine to find the best parameters

in order to register preoperative and intra-operative modalities (6 parameters),
correct the gray levels of the intra-operative image (3 parameters) and find the
optimal number of bins to build the joint histogram (2 parameters). Once the
algorithm has converged, we apply the luminance and the geometric transform to
the intra-operative image. The similarity measure used is the Normalized Entropy
between the source (diagnosis image) and the target (ODIN) image.
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Figure 4.22: MI/NE comparison for features selection.
Selection of the numbers of bins in the ODIN image using Mutual Information

(MI) or Normalized Entropy (NE). Both MI and NE presents a global optimum
but MI converges to the maximum number of bins. The selection is therefore not
relevant. On the contrary, NE converges to an intermediate number of bins.

ric parameters (translations and rotations). In this section, the results ob-
tained for each block will be successively discussed.

Selecting the number of bins in both modalities allows to compare two
similarity measures : Mutual Information (MI) and Normalized Entropy
(NE). After optimization, the selected numbers of bins were fixed to 5 in
the diagnosis image and to 10 in the ODIN image. The value of Mutual
Information and Normalized Entropy is plotted in figure 4.22 as a function
of the number of bins in the intra operative modality (keeping 5 bins in the
diagnosis image). It clearly appears that NE presents a maximum for 10
bins in the ODIN image. On the contrary, MI selects always the maximum
number of segments and emphasizes the marginal entropy in both images.

To examine if the selected number of bins is anatomically relevant, the
corresponding threshold (figure 4.23) is applied to both images. The quan-
tization in the diagnosis image allocates different bins to the ventricles, the
brain or the skull. Due to the noise in the intra operative image, the quanti-
zation is more confused even if the polynomial correction try to correct the
bias. However, this seems enough to converge to a satisfying alignment.

Our algorithm converges to a multiplicative bias correction visible in
the middle part of figure 4.24. It can be clearly observed that the correc-
tion emphasizes the inferior left corner. Figure 4.25 compares the joint
histograms after simple rigid registration and after simultaneous registra-
tion and bias correction. It appears that the resulting joint histogram after
simultaneous optimization strategy is more compact.

Once the polynomial and the rigid registration applied to the ODIN
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Figure 4.23: Optimal number of bins joint selection using Normalized Entropy.
Relevant objects are isolated (brain, ventricles, skull) emphasizing common in-

formation between the involved modalities.

Figure 4.24: Optimal bias correction using Normalized Entropy.
A view of the bias correction obtained by our algorithm. We used a multiplica-

tive and linear correction to correct the bias in the intra-operative modality. The
coefficient of the polynomial correction in the gray levels and the geometric trans-
form parameters were obtained by maximization of a similarity measure with a
standard MR image of the same patient.
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Figure 4.25: Joint histograms before and after alignment.
The first histogram we show is the initial joint histogram between the gray levels

in the two images (ODIN and diagnosis MR image). The second histogram is
obtained after rigid registration without bias correction. The third one is the joint
histogram we get after simultaneous registration and bias correction of the ODIN
and the diagnosis image. We see that in our case, the bias correction is necessary
to avoid dispersion in the joint distribution.

image, we obtained the result showed in figure 4.26 (the contours of the
preoperative image are over-imposed to the corrected ODIN image). It can
be observed that the tumor and the ventricles are well registered. How-
ever, near the boundaries of the ODIN image, geometric distortions ap-
pear. More data would be needed (for example phantom images) to eval-
uate the importance of these distortions.
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Figure 4.26: Contours of the preoperative image reported on the intra-operative
(ODIN) image.



Multi-subject
Registration for
Unbiased Probabilistic
Atlas Generation 5
This chapter describes an original multi-subject registration algorithm. We first
review the existing probabilistic atlas construction methods. A short review of the
EM technique (which has numerous applications in the signal processing field)
is then given in Section 5.2. The STAPLE algorithm introduced by Warfield
for the validation of image segmentation and expert performances evaluations is
described in Section 5.3. The next section shows how the STAPLE framework
can be used for multi-subjects alignment by addition to the model of a vector of
transformations mapping each subject on the probabilistic atlas which is in this
framework the hidden variable of the EM algorithm. We present results on a data
base of 80 brains segmented into 4 labels (white matter, gray matter, ventricles
and background).

5.1 Existing Probabilistic Atlas Construction Meth-
ods

Over the last century, the construction of brain atlases has been a central is-
sue to the understanding of brain anatomy. The first atlases were obtained
from post-mortem acquisitions. With the emergence of three dimensional
imaging modalities such as Magnetic Resonance images, research has been
directed towards the development of 3D digital atlases. So far, most of the
available atlases are based on single subjects. The work of Talairach and
Tournoux [1998] defines a 3-dimensional proportional system for compar-
ing brains of different sizes. They organize the brain into areas delimited
by anatomical plans and define proportional rules to map coordinates ac-
quired on the subject to atlas coordinates. The Surgical Planning Labo-
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ratory atlas [Kikinis, R. 1996] is obtained from a Magnetic Resonance im-
age manually segmented by medical experts.The atlas labels are organized
into hierarchical categories.

Although these atlases provide a standard system of coordinates, they
lack to illustrate the variability of anatomical structures since a single sub-
ject can not represent structural variabilities between individuals.

For characterizing this variability, an intense research effort has been
dedicated to the development of volumetric registration algorithms map-
ping a single reference subject on a population. [Dinggang and Davatzikos
2002, Miller et al. 99, Toga 1999]. A statistical analysis of the transforma-
tions can also be used to characterize different populations[Csernansky
et al. 1998, Joshi et al. 2003, Thompson et al. 1998]. This approach brings
the problem of multi-subjects registration back to a pairwise registration
problem.The drawback of this technique is to introduce a bias in the choice
of the reference subject.

The problem of building unbiased atlases has therefore generated a
wide interest in the medical imaging research community. Guimond et al.
[1999] developed an iterative algorithm for reducing the bias : the average
of displacement fields is computed and applied to the reference to gener-
ate an unbiased reference. Marsland et al. [2003] has proposed to change
the reference subject over the alignment process. A distance is defined
between each pair of subjects by composing transformations through the
current reference. At each step, the reference is updated as the subject
minimizing the sum of distances to the other subjects. Bhatia et al. [2004]
proposed to pick one subject as a reference subject for intensities and com-
putes a joint histogram by incrementing all bins corresponding to the fol-
lowing realizations

(intensity in the reference subject, intensity in subject i)

for i = 1 . . . Nsubjects\{iref}. In this scheme, the transformation parame-
ters for all subjects are optimized simultaneously. Zollei et al. [2005] also
performs a joint optimization of transformation parameters across all sub-
jects and uses the sum of voxel-wise entropies as a joint alignment crite-
rion.

Joshi et al. [2004] computes a reference subject at each step by aver-
aging all subjects for the current alignment. The velocity field for each
subject is computed at each iteration by applying the inverse of a Navier-
Stokes differential operator to the force function. The force function is
simply the optical flow force between the reference and the subject.
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5.2 The EM algorithm

EM is an iterative method to estimate some unknown parameters θ given
some measurement data D. The model also includes hidden (also called
nuisance) variables W which need to be integrated out. A first choice for
the θ parameters is to choose for the one optimizing a posterior probabil-
ity of the parameters θ given the data D marginalized over the hidden
variable W

θopt = arg max
θ

ln

( ∑
w∈W

f(w,D|θ)

)
(5.1)

The idea behind EM is to iteratively estimate a distribution of the hidden
variable conditioned over the observations and to use this posterior distri-
bution to integrate the complete likelihood function.

There are many ways of deriving the EM approach, but one of the
most intuitive being in term of lower bound maximization [Dellaert 2002,
Minka 1998]. The idea behind EM is to start with a guess θt for the pa-
rameters θ, compute a lower bound B(θ,θt) to the cost function in Equa-
tion (5.1) and maximize this lower bound instead.

The key problem in Equation (5.1) is the presence of of the logarithm
of a big sum, which is difficult to deal with, especially for computing an-
alytically the zero of the first derivative. Fortunately, we can construct a
lower bound B(θ,θt) that contains a sum of logarithms. For deriving this
bound, an arbitrary probability distribution f t(W ) is introduced over the
space of the hidden variable

ln

( ∑
w∈W

f(w,D|θ)

)
= ln

( ∑
w∈W

f(w,D|θ)
f t(w)

f t(w)

)
(5.2)

By using Jensen’s inequality [Dellaert 2002],

Jensen’s inequality.
If f is a convex function and X a random vari-
able, then

Ef(X) ≥ f(EX)

we can define a lower bound by

B(θ,θt) def=
∑

w∈W

f t(w) ln
f(w,D|θ)
f t(w)

≤ ln

( ∑
w∈W

f(w,D|θ)
f t(w)

f t(w)

)
(5.3)
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5.2.1 Optimal Bound

An optimal bound can be derived by computing the optimal distribution
f(w) for the current guess of θt. For computing this bound [Dellaert 2002,
Minka 1998], the constrain that

∑
w f t(w) = 1 is added to the cost function

using a Lagrange multiplier

C(f t(w)) = B(θt,θt)− λ

( ∑
w∈W

f t(w)− 1

)
(5.4)

=
∑

w∈W

f t(w) ln f(w,D|θt)−
∑

w∈W

f t(w) ln f t(w)

−λ

( ∑
w∈W

f t(w)− 1

)
(5.5)

Maximizing Equation (5.5) following f(w) and λ yields the following so-
lution

f t(w) =
f(w,D|θt)∑

w∈W f(w,D|θt)
= f(w|D,θt) (5.6)

The optimal bound used by the EM algorithm is then

B(θ,θt) =
∑

w∈W

f(w|D,θt) ln
f(w,D|θ)
f(w|D,θt)

(5.7)

It is easy to see thatB(θ,θt) touches the objective function in θ = θt :

B(θt,θt) =
∑

w∈W

f(w|D,θt) ln f(D|θt) = ln f(D|θt) (5.8)

which is identical to Equation (5.2).
Since B(θ,θt) can be decomposed in two terms

B(θ,θt) = Qt(θt,θt)−H (5.9)

where

Qt(θ,θt) def=
∑

w∈W

f(w|D,θt) ln f(w,D|θ) (5.10)

= EW
{

ln f(W ,D|θ)|D,θt
}

(5.11)

and
H def=

∑
w∈W

f(w|D,θt)f(w|D,θt) (5.12)
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which is not depending in θ, maximizing B(θ,θt) is equivalent to maxi-
mizing Qt(θ,θt). Therefore the EM algorithm can be summarized as

while convergence is not reached, perform

(E Step) calculate f t(w) = f(w|D,θt)

(M Step) calculate θt+1 = arg maxθ Q
t(θ,θt)

5.3 The STAPLE Algorithm

STAPLE [Warfield et al. 2004] is an algorithm for characterizing the per-
formances of a set of experts or algorithms segmenting the same anatom-
ical structures. It can be used for evaluating intra-observers and extra-
observers variabilities. The expert performances are characterized by tran-
sitional probabilities for an expert to classify a pixel as belonging to the
class s′ when the true label is s.

The evaluation of this conditional probabilities require to estimate a
ground truth which is by definition not an observable variable. For this
reason, the EM algorithm shortly introduced in Section 5.2, is an ideal
framework for iteratively estimating the performance parameters charac-
terizing each expert and simultaneously estimating the hidden distribu-
tion of classes at each voxel.

As seen is Section 5.2, the EM algorithm is an iterative strategy for
optimizing a complete likelihood cost function

ln f(W ,D|θ) (5.13)

where in our case, D is the observed variable of expert decisions (set of
segmentations), W is the hidden variable represented by a probability
density of each tissue class at each voxel, θ contains the set of conditional
probabilities describing the expert performances.

5.3.1 E Step

At each iteration of the algorithm, two steps are performed. The first called
expectation step (E Step) estimates the a posteriori density of the hidden vari-
able conditioned over the observations of the expert decisions and the cur-
rent estimate of the expert performance parameters. Typically the E step
uses the Bayes law to write the posterior probabilities

p(hidden variable | observations)
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as a function of
p(observations | hidden variable)

which are related to the model used to compute the likelihood cost func-
tion. In our context, the hidden variable density function Wsi giving the
probability to find the tissue class s at voxel i is obtained from the condi-
tional probabilities θ

Wsi =
1
Ci
f(Ai = s)

Nsubjects∏
j

θ̂jDij |s (5.14)

where θjs′|s is defined as

θjs′|s = prob. for expert j to say s′ when the true label is s (5.15)

The constant Ci is fixed so that the Wsi at each voxel are summed to 1

Ci =
∑
s′

f(Ai = s′)
Nsubjects∏

j

θ̂jDij |s′ (5.16)

5.3.2 M Step

The second step called M Step solves for the θ parameters optimizing a
modified likelihood score (5.11)

θopt = arg max
θ

EW

{
ln f(W ,D|θ)

∣∣∣D,θt
}

(5.17)

= arg max
θ

EW

{
ln f(D|W ,θ)f(W )

∣∣∣D,θt
}

(5.18)

where it we have assumed in Equation (5.18) that the hidden variable was
independent on the θ parameters i.e. f(W |θ) = f(W ). Since f(W ) is
independent on θ, optimizing Equation (5.18) is equivalent to optimize

θopt = arg max
θ

EW {ln f(D|W ,θ)} (5.19)

= arg max
θ

Nvoxels∑
i

Nsubjects∑
j

EW i ln f(Dij |W i,θ) (5.20)

= arg max
θ

Nvoxels∑
i

Nsubjects∑
j

Nlabels∑
s

Wsi · ln f(Dij |Wi = s,θ) (5.21)
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Since all subjects are considered as independent, optimizing the cost func-
tion in Equation (5.21) can be done separately for each subject and the
sum over j can therefore be considered term by term. The cost function to
optimize for each subject is then∑

s

∑
s′

∑
i:Dij=s′

Wsi ln(θs′s) (5.22)

We must associate to this cost function the constrain that θ has to be
summed to 1 over s′. This can be done by adding a Lagrange multiplier to
Equation (5.22).

∑
s

∑
s′

∑
i:Dij=s′

Wsi ln(θs′s) + λ ·

(
1−

∑
s′

θs′s

)
(5.23)

Taking the derivative of Equation (5.23).∑
i:Dij=s′

Wsi
1
θs′s

− λ = 0 (5.24)

⇒ θs′s =
∑

i:Dij=s′

Wsi/λ (5.25)

From the constrain
∑

s′ θs′s = 1, it comes that λ =
∑

iWsi and then

θs′s =

∑
i:Dij=s′

Wsi∑
iWsi

(5.26)

The EM algorithms iterates until convergence between Equation (5.14)
and Equation (5.26) until convergence. The convergence can be measured
by comparing at two successive iterations the values of the θj matrix for
each expert. In practice, averaging over all experts the trace of θj is a good
indicator of convergence [Warfield et al. 2004].

5.4 Multi-subjects Registration Algorithm

In this section, we examine how the STAPLE algorithm can be adapted for
performing the joint alignment of a collection of segmentations of the same
tissue classes acquired from different subjects. The optimization process
described in Section 5.3 must therefore take into consideration an addi-
tional set of parameters modeling the transformations aligning each sub-
ject on the current version of the hidden variable estimate. In this case,



90 Chapter 5. Multi-subject Registration for Unbiased Probabilistic Atlas Generation

the hidden variable W represents a probabilistic atlas giving at each voxel
(and for the current alignment), the probability of having a tissue class in
the population.

Two families of transformations have been considered in our study :
affine transformations and free-form displacement fields. The optimiza-
tion procedures for these different transformation models are related to
Chapters 3 and 4.

5.4.1 E Step

If the parameters vector θ is augmented by a vector of parameters model-
ing the transformation of each subject subject on the atlas, the tissue class
at each voxel depends on the current transformation for this subject. Each
Dij value has then to be rewritten like

Dij = Dj(T j(i)) = Dj(T
j
i ) (5.27)

In the loop of the STAPLE algorithm, the E step performed at each it-
eration remains unchanged since all the parameters to optimize are kept
constant during this phase. Equation (5.14) is still valid and computes at
each iteration of the EM algorithm the atlas weights Wsi.

5.4.2 M Step

If we get back to Equation (5.26), we can rewrite it using the notation of
Equation (5.27) and a Kronecker delta for having the sum over pixels cov-
ering all the pixel indexes.

θ̂j,T
j

s′|s =
∑

iWsi · δ(Dj(T j(i))− s′)∑
iWsi

(5.28)

When it comes to include the transformation as parameters in the opti-
mization procedure, a critical point is to have continuous changes in the
cost function for continuous changes in the set of parameters. Since the
cost function (Equation (5.23)) includes the set of θ parameters, a natural
choice for ensuring continuity of the cost function is to substitute the Kro-
necker function in Equation (5.28) by a continuous kernel β (typically a
Gaussian or BSpline) :

θ̂j,T
j

s′|s =
∑

iWsi · β(Dj(T j(i))− s′)∑
iWsi

(5.29)
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We can also remark that if the solution of θjs′|s is injected into the cost
function to optimize for each subject, Equation (5.23) can be rewritten as

H(Dj |A) =
∑
ss′

θjs′|s · ln(θjs′|s) ·
∑
i

Wsi (5.30)

=
∑
ss′

θjs′|s · θs · ln(θjs′|s) (5.31)

where we have defined
θs

def=
∑
i

Wsi (5.32)

The criterion in Equation (5.30) is by definition the conditional entropy of
the subject over the atlas for the current alignment1. For a given trans-
formation, the θ parameters optimizing the cost function given by Equa-
tion (5.21) can be computed from Equation (5.28). Since no close form of
the cost function Equation (5.30) is available for the transformation param-
eters, an iterative optimization method must be used.

However, it can be seen that minimizing Equation (5.30) as it is can
lead the optimization process to diverge. The following inequality

0 ≤ H(Dj |A) ≤ H(Dj) (5.33)

shows that H(Dj |A) can be minimized simply by minimizing its upper
boundH(Dj). This means that a set of transformations moving all subjects
outside the atlas domain would make tend the entropy of each subject to
0 and therefore would minimize the criterion in Equation (5.30) without
yielding a satisfactory solution. This undesired solution can be discarded
by adding the marginal entropy of the subject for the current transfor-
mation to the cost function. The criterion to optimize is thus the mutual
information between the subject and the probabilistic atlas

MIj = H(Dj)−H(Dj |A) (5.34)

where H(Dj) is measured using the marginal histogram of the subject la-
belled image. The general optimization scheme is then

1An additional normalization of θs is required for having θs representing a probability
but this only affects the cost function by a multiplicative constant.
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(A) Compute the Wsi for the current alignment

(B) Align each subject on the current probabilis-
tic atlas

B for each transformation, compute θj us-
ing Equation (5.28)

B compute MIj (Equation (5.34))

B iterate until convergence

(C) IfWsi has not converged yet, get back to (A)

5.4.3 Multi-Subjects Rigid Alignment

In a first time, a rigid and scale deformation model is used to increase the
similarity between the atlas and each subject. This transformation model
allows 9 degrees of freedom for rotations, translations and scaling. To
speed up the convergence, the set of transformations is initialized by trans-
lations mapping the center of gravity of each subject segmentation to the
center of the common space of coordinates. For this transformation model,
we use the SPSA optimization method introduced by Spall[Spall 1998].

5.4.4 Multi-Subjects Non-Rigid Alignment

For maximizing Equation (5.34), an iterative variational displacement field
is derived in a similar way as described in Chapter 3.

At each iteration,the current displacement field v(i) is updated by com-
puting a ∆v(i) proportional to

∇Dj(T (i)) ·
∑
ss′

−Wsi · ln
p(Ai = s,Dj(T (i)) = s′)

p(Dj(T (i)) = s′)

· β′(Dj(T (i))− s′) (5.35)

This equation is similar to Eqs. (3.17) and (3.18) but the β1 box function
over one bin of the fixed images is replaced by the weighting function
Wsi.

The presence of ∇T (i) in Eq.5.35 reminds a classical optical flow in-
cremental field estimation. Instead of being multiplied by the differ-
ence of intensity functions in fixed and moving images, the gradient
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in the subject (moving image) is multiplied by a weighted function of
Wsi · β′(Dj(T (i))− s′). The weights are proportional to joint and marginal
probability densities measured over the entire atlas domain. This proves
that mutual information (in opposition to mean squared differences) acts a
global metric, even for estimating local displacements, taking into account
global statistical properties of both images to be aligned.

5.5 Experiments

The multi-subject registration algorithm has been run on 80 segmentations
(256 × 256 × 124 voxels) of adult brains containing 4 labels : background,
ventricles, white and gray matter). The set of transformations has been
initialized by translations bringing the center of gravity of each subject to
the center of the atlas domain.

For aligning such a large collection of subjects, a slight variant of the
multi-subject alignment algorithm described in Section 5.4 has been im-
plemented. Since the θjs′|s have a close form solution in the M step (Equa-
tion (5.28)), the parameters of the transformation are first held constant
and the usual STAPLE algorithm iterates between the E steps and M steps
described in Section 5.3. In a second time, each subject is aligned on the
Wsi probabilistic atlas using first a rigid and scale transformation. Once
the rigid alignment procedure has reached convergence, a non-parametric
displacement field is estimated following Equation (5.35).

5.5.1 Rigid Alignment

Two iterations (each iteration includes (a) atlas and expert parameters es-
timation and (b) sequential subject to atlas alignment) were used to find
the optimal parameters of a rigid and scale transformation model param-
eterized by 9 parameters. In our transformation model, the scaling pa-
rameters are mapped to the (− inf,+ inf) domain by optimizing their log-
arithm (this avoids to have different search domains for each parameter).
The alignment of a subject on the current atlas estimate takes less than 5
minutes. The SPSA optimization routine and the mutual information met-
ric for probabilistic atlas to image registration have been integrated in the
Insight Toolkit[Ibanez and Schroeder 2005].
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5.5.2 Non-Rigid Alignment

For non-rigid registration, the flow in Eq.5.35 has been integrated in the
ITK[Ibanez and Schroeder 2005] dense multi-threaded non-rigid registra-
tion framework. The displacement field is smoothed at each iteration by a
Gaussian kernel. Figure 5.2 plots the sum of segmentations weighted by
the probabilistic atlas after rigid (left) and non-rigid (right) registration.
Each label is plotted in a different channel (R,G,B). Bright color on this fig-
ure show areas where the subject labels and the probabilistic atlas where in
accordance. It can be seen that the volume of ’bright’ white matter has in-
creased after non-rigid registration. Figure 5.1 plots a simple unweighted
sum of the labels across all subjects after rigid (left) and non-rigid (right)
alignment. The contours of the ventricles in the sum after non-rigid align-
ment appear more precisely after non-rigid alignment.

To figure out how smooth the transformation is, Figures 5.3 and 5.4
plot the same 9 subjects after affine and non-rigid alignment for a sagittal
slice. Figures 5.5 and 5.6 show the same subjects as in Figures 5.3 and 5.4
but in a coronal view. It appears clearly on these figures, that the non-rigid
transformations do not not affect the topology of the white matter matter
ramifications but tend to better align the external contour of the brains and
ventricles. Figure 5.1 show also that some small clusters of white matter
appear more intense after non-rigid alignment. This show that the number
of coherent white matter pixels across all subjects increase with the non-
rigid alignment of these subjects on the probabilistic atlas.

5.5.3 Deformations Principal Components Analysis

To characterize the principal deformations modes mapping the probabilis-
tic atlas on each subject in the data base, we run an Principal Component
Analysis (PCA) on the collection of non-rigid displacement fields resulting
from the MI flow computation (Equation (5.35).

Since the dimension of the data is enormous (3×256×256×124), some
precautions must be taken in the implementation.

If we first define the U matrix as the juxtaposition of the 80 displace-
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ment fields

U =



v1
1x · · · v80

1x

v1
1y · · · v80

1y

v1
1z · · · v80

1z
...

...
...

v1
NV x

· · · v80
NV x

v1
NV y

· · · v80
NV y

v1
NV z

· · · v80
NV z


(5.36)

where the superscript number refers to the subject (1 · · · 80), the first index
covers the range of voxels (1 · · ·NV ) and the second index refers to the x,
y and z dimensions of the displacement vector.

A direct computation of the deformation modes would require to com-
pute the eigen values and eigen vectors of the UU t matrix. Such compu-
tation is not affordable for stability and memory reasons. To bypass this
issue, we can look at the eigen vectors and eigen values of the U tU matrix.
If λ and ν are linked by

U tU · ν = λν (5.37)

we can pre-multiply both members of this equality by U to get

(UU t) · Uν = λUν (5.38)

This equation shows that, if λ and ν are eigen value and vector of U tU ,
then λ and Uν are eigen value and vector of UU t. Since the dimensions
of U tU is 80 × 80 (the number of subjects in the data base), the computa-
tion has a reasonably low complexity. Moreover, the Uν product can be
implemented to spare memory.

Figure 5.7 shows the first four modes of variations of the 80 displace-
ments fields. The z component of the arrows are coded accordingly to the
color bar. These deformations modes could be used to accelerate the align-
ment of a new subject on the data base or in an atlas based segmentation
algorithm.
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(rigid & scale sum axial) (non-rigid sum axial)

(rigid & scale sum sagit.) (non-rigid sum sagit.)

Figure 5.1: Sum of the 80 segmentations (four labels) after rigid and scale align-
ment and after 2 iterations of non-rigid warping.
The value plotted at each pixel is simply

∑
j Dj(Tj(i))). The regions of white

matter high variability tend to be more peripheral after non-rigid alignment.
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(weighted sum rigid & scale) (weighted sum non-rigid)

Figure 5.2: Weighted sum.
In this image, each subject voxel segmentation is summed in separate channels.
Each subject label is weighted by the probability value of the atlas. Thus the value
plotted at each pixel is

∑
jWsiChannel{Dj(Tj(i))}. Bright colors mean that the

subject labels were coherent with the atlas at this point.
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(case 10 rigid & scale ) (case 14 rigid & scale) (case 29 rigid & scale)

(case 3 rigid & scale ) (case 33 rigid & scale) (case 53 rigid & scale)

(case G54 rigid & scale ) (case 57 rigid & scale) (case G24 rigid & scale)

Figure 5.3: Rigid and scale alignment of typical subjects (sagittal slice).. This
figure shows the alignment of 9 subjects (chosen randomly in the 80 subjects)
after rigid and scale alignment. The contours of the resulting probabilistic atlas
are show in blue (white matter border) and red (brain-background border).
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(case 10 non-rigid) (case 14 non-rigid) (case 29 non-rigid)

(case 3 non-rigid) (case 33 non-rigid) (case 53 non-rigid)

(case G54 non-rigid) (case 57 non-rigid) (case G24 non-rigid)

Figure 5.4: Non-rigid alignment of typical subjects (sagittal slice).This figure
shows the alignment of the same 9 subjects as in Figure 5.3 after non-rigid align-
ment. The contours drawn in blue and red are identical to the contours shown in
Figure 5.3.
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(case 10 rigid & scale ) (case 14 rigid & scale) (case 29 rigid & scale)

(case 3 rigid & scale ) (case 33 rigid & scale) (case 53 rigid & scale)

(case G54 rigid & scale ) (case 57 rigid & scale) (case G24 rigid & scale)

Figure 5.5: Rigid and scale alignment of typical subjects (coronal slice). This
figure shows the rigid and scale alignment of the same subjects as in Figures 5.3
and 5.4 on a coronal slice
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(case 10 non-rigid) (case 14 non-rigid) (case 29 non-rigid)

(case 3 non-rigid) (case 33 non-rigid) (case 53 non-rigid)

(case G54 non-rigid) (case 57 non-rigid) (case G24 non-rigid)

Figure 5.6: Non-rigid alignment of typical subjects (coronal slice).This figure
shows the non-rigid alignment of the same subjects as in Figures 5.3 and 5.4 on a
coronal slice
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(mode 0) (mode 1)

(mode 2) (mode 3)

Figure 5.7: Principal deformation modes.
This figure shows the 4 first variation modes extracted from the 80 displacement
fields obtained after non-rigid registration. The 0 mode shows the mean value of
the displacement fields.



Conclusion and
Perspectives 6
This chapter summarizes the contributions of this thesis, lists related publications
and suggests improvements both on applicative and algorithmic point of views.

6.1 Achievements and Contributions

The goal of this thesis has been the development of non-rigid registration
algorithms addressing well known challenges in the medical images pro-
cessing community.

A first challenge is the design of registration algorithms including
prior knowledge about volumetric deformations. Following the approach
of Ferrant et al. [2002; 2001], we first have investigated the use of bio-
mechanical deformation models in image registration. To address multi-
modal applications, we designed a gradient descent optimization of a two
terms cost function combining mutual information and linear elastic en-
ergy. This algorithm is described in Chapter 4 (Section 4.5) and has been
recently published in Media (Elsevier) [du Bois d’Aische et al. 2004].

A second challenge is to address high dimensional optimization prob-
lems in non-rigid registration. No optimizer performs better than all other
in all applications but some classes of optimizers better fits specific classes
of problems. In the case of mutual information based non-rigid registra-
tion, the optimizer has to keep reasonable performances even for a large
number of parameters and must behave well in the presence of a noisy
cost function. The SPSA algorithm, as proposed by Spall [1998] and de-
scribed in Chapter 4, implements a fast estimate of the gradient (indepen-
dently of the number of parameters). SPSA is well known to have good
convergence properties in the presence of a noisy cost function (see the
convergence proof in Maryak and Chin [2001]). We chose to investigate
the use of SPSA in our work because of the noisy nature of mutual infor-
mation. SPSA has been applied for rigid registration and this solution has
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been implemented as a module in the Medical Studio software, currently
evaluated at the St Luc hospital. The SPSA has been committed to the ITK
toolkit. We also investigated the used of SPSA in non-rigid registration
combined with a Finite Elements deformation model. The algorithm and
the results we got on brain shift, liver and prostate images are described
in Chapter 4 (Section 4.6).

An alternative to stochastic optimization is the use of a variational
method for optimizing mutual information. This approach has first been
introduced by Hermosillo et al. [2001] but is not often used in practice and
is currently absent from ITK. Since it combines the flexibility of a dense
deformation field and the robustness of mutual information, we thought
interesting to work on an implementation of this algorithm in ITK. It has
been submitted for inclusion and we hope it will be integrated soon in the
toolkit. First results are described in the last section of Chapter 3.

A last challenge in registration problems, is to address the matching
of a large collection of subjects instead of searching correspondences be-
tween a pair of images. Our approach proposed in Chapter 5 brings this
problem into the EM formalism. This work has been inspired by the pa-
per of Warfield et al. [2004] for the validation of image segmentation and
expert performance evaluation and the paper of Joshi et al. [2004]. As in
[Joshi et al. 2004], a reference is first estimated for the current alignment
in a first step and each subject is then aligned on the current reference in
a second step. The algorithm iterates between these two steps until con-
vergence. Our approach differs by using the STAPLE probabilistic atlas
as a reference instead of a simple average of all subjects as in Joshi et al.
[2004]. Our approach searches both for rigid and non-rigid transforma-
tions. Another difference is the use of a mutual information driving force
for non-rigid registration instead of an optical flow force.

6.2 Perspectives and Future Works

Different perspectives could be investigated on the algorithmic and ap-
plicative levels.

From an algorithmic point of view, it would be interesting to investi-
gate the following paths:

• To compare the approach of a two terms cost function like presented
in Chapter 4 with the propagation of the elastic regularization by
solving a linear system at each iteration. The deformation could
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be constrained by other physics-based models, such as proposed by
Christensen ([Christensen and He 2001])

• To compare the performances of the first order SPSA that we have
implemented with a second order scheme like presented in Spall
[2000]. The algorithm could be stabilized using adaptive gains and
a gradient smoothing procedure like suggested in [Vande Wouwer
and Renotte 2003]

• To use the atlas constructed using the algorithm described in Chap-
ter 5 in a joint segmentation-atlas alignment procedure (see for in-
stance Warfield et al. [2000]

• To adapt the algorithm described in Chapter 5 for the alignment of
gray level images. This would require to include some assumptions
of gaussianity for each class of the probabilistic atlas and to estimate
the parameters of these gaussians within the EM procedure.

From an applicative point of view, our next work will be to apply the
techniques developed for brain probabilistic atlas construction to the neck
area.

6.3 Related Publications

This thesis has led to several publications with Aloys du Bois d’Aische in
international conferences. One journal paper has been accepted and two
more journal papers will soon be submitted.

The joint registration and bias correction scheme described in Chap-
ter 4 (Section 4.7) has been presented at the SPIE Medical Images in San
Diego in january 2003. This work has mostly been done during my master
thesis at EPFL - ITS (Lausanne)

The brain shift results of the non-rigid registration method described
in Chapter 4 (Section 4.6.5) have been presented during the conference
SPIE Medical Images in San Diego in January 2004. The results obtained on
liver and prostate images (Chapter 4, Section 4.6.4) have been presented at
the ISBI conference (Washington, April 2004) [De Craene et al. 2004a]. The
inclusion in this implementation of the BCC mesher code developed by
Aloys du Bois d’Aische has lead to a publication at the Miccai conference
in Saint-Malo [du Bois d’Aische et al. 2004] (September 2004).

A journal paper has been published about mutual information com-
bined with a bio-mechanical model for the alignment of histological and
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section images of the neck, in Elsevier’s Medical Image Analysis in 2005 (see
[du Bois d’Aische et al. 2004]).

I have been granted coauthor for the work of Aloys about articulated
registration. This work will be presented at the next ICIP conference
(Genoa 2005) [du Bois d’Aische et al. 2005]. A journal paper on this topic
will soon be submitted.

Our atlas construction algorithm has been presented at the Miccai 2004
conference [De Craene et al. 2004b] and will be presented at ICIP 2005
[De Craene et al. 2005]. This work will soon be submitted for a journal
publication.
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